1
|
Sun W, Shahrajabian MH, Ma K, Wang S. Advances in Molecular Function and Recombinant Expression of Human Collagen. Pharmaceuticals (Basel) 2025; 18:430. [PMID: 40143206 PMCID: PMC11945623 DOI: 10.3390/ph18030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Collagen is the main protein found in skin, bone, cartilage, ligaments, tendons and connective tissue, and it can exhibit properties ranging from compliant to rigid or form gradients between these states. The collagen family comprises 28 members, each containing at least one triple-helical domain. These proteins play critical roles in maintaining mechanical characteristics, tissue organization, and structural integrity. Collagens regulate cellular processes such as proliferation, migration, and differentiation through interactions with cell surface receptors. Fibrillar collagens, the most abundant extracellular matrix (ECM) proteins, provide organs and tissues with structural stability and connectivity. In the mammalian myocardial interstitium, types I and III collagens are predominant: collagen I is found in organs, tendons, and bones; collagen II is found in cartilage; collagen III is found in reticular fibers; collagen IV is found in basement membranes; and collagen V is found in nails and hair. Recombinant human collagens, particularly in sponge-like porous formats combined with bone morphogenetic proteins, serve as effective scaffolds for bone repair. Due to their biocompatibility and low immunogenicity, collagens are pivotal in tissue engineering applications for skin, bone, and wound regeneration. Recombinant technology enables the production of triple-helical collagens with amino acid sequences identical to human tissue-derived collagens. This review summarizes recent advances in the molecular functions and recombinant expression of human collagens, with a focus on their biomedical applications.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Kun Ma
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| | - Shubin Wang
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| |
Collapse
|
2
|
Schlauch D, Ebbecke JP, Meyer J, Fleischhammer TM, Pirmahboub H, Kloke L, Kara S, Lavrentieva A, Pepelanova I. Development of a Human Recombinant Collagen for Vat Polymerization-Based Bioprinting. Biotechnol J 2024; 19:e202400393. [PMID: 39380502 DOI: 10.1002/biot.202400393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
In light-based 3D-bioprinting, gelatin methacrylate (GelMA) is one of the most widely used materials, as it supports cell attachment, and shows good biocompatibility and degradability in vivo. However, as an animal-derived material, it also causes safety concerns when used in medical applications. Gelatin is a partial hydrolysate of collagen, containing high amounts of hydroxyproline. This causes the material to form a thermally induced gel at ambient temperatures, a behavior also observed in GelMA. This temperature-dependent gelation requires precise temperature control during the bioprinting process to prevent the gelation of the material. To avoid safety concerns associated with animal-derived materials and reduce potential issues caused by thermal gelation, a recombinant human alpha-1 collagen I fragment was expressed in Komagataella phaffii without hydroxylation. The resulting protein was successfully modified with methacryloyl groups and underwent rapid photopolymerization upon ultraviolet light exposure. The developed material exhibited slightly slower polymerization and lower storage modulus compared to GelMA, while it showed higher stretchability. However, unlike the latter, the material did not undergo physical gelation at ambient temperatures, but only when cooled down to below 10°C, a characteristic that has not been described for comparable materials so far. This gelation was not caused by the formation of triple-helical structures, as shown by the absence of the characteristic peak at 220 nm in CD spectra. Moreover, the developed recombinant material facilitated cell adherence with high cell viability after crosslinking via light to a 3D structure. Furthermore, desired geometries could be easily printed on a stereolithographic bioprinter.
Collapse
Affiliation(s)
- Domenic Schlauch
- Cellbricks GmbH, Berlin, Germany
- Leibniz University Hannover, Hannover, Germany
| | - Jan Peter Ebbecke
- Cellbricks GmbH, Berlin, Germany
- Leibniz University Hannover, Hannover, Germany
| | | | | | | | | | - Selin Kara
- Leibniz University Hannover, Hannover, Germany
| | | | | |
Collapse
|
3
|
Zhao X, Li N, Zhang Z, Hong J, Zhang X, Hao Y, Wang J, Xie Q, Zhang Y, Li H, Liu M, Zhang P, Ren X, Wang X. Beyond hype: unveiling the Real challenges in clinical translation of 3D printed bone scaffolds and the fresh prospects of bioprinted organoids. J Nanobiotechnology 2024; 22:500. [PMID: 39169401 PMCID: PMC11337604 DOI: 10.1186/s12951-024-02759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Bone defects pose significant challenges in healthcare, with over 2 million bone repair surgeries performed globally each year. As a burgeoning force in the field of bone tissue engineering, 3D printing offers novel solutions to traditional bone transplantation procedures. However, current 3D-printed bone scaffolds still face three critical challenges in material selection, printing methods, cellular self-organization and co-culture, significantly impeding their clinical application. In this comprehensive review, we delve into the performance criteria that ideal bone scaffolds should possess, with a particular focus on the three core challenges faced by 3D printing technology during clinical translation. We summarize the latest advancements in non-traditional materials and advanced printing techniques, emphasizing the importance of integrating organ-like technologies with bioprinting. This combined approach enables more precise simulation of natural tissue structure and function. Our aim in writing this review is to propose effective strategies to address these challenges and promote the clinical translation of 3D-printed scaffolds for bone defect treatment.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Ziqi Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jinjia Hong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yujia Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Jia Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Meixian Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Xiuyun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| |
Collapse
|
4
|
Chandra DK, Reis RL, Kundu SC, Kumar A, Mahapatra C. Nanomaterials-Based Hybrid Bioink Platforms in Advancing 3D Bioprinting Technologies for Regenerative Medicine. ACS Biomater Sci Eng 2024; 10:4145-4174. [PMID: 38822783 DOI: 10.1021/acsbiomaterials.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.
Collapse
Affiliation(s)
- Dilip Kumar Chandra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| |
Collapse
|
5
|
Pal P, Sambhakar S, Paliwal S, Kumar S, Kalsi V. Biofabrication paradigms in corneal regeneration: bridging bioprinting techniques, natural bioinks, and stem cell therapeutics. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:717-755. [PMID: 38214998 DOI: 10.1080/09205063.2024.2301817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Corneal diseases are a major cause of vision loss worldwide. Traditional methods like corneal transplants from donors are effective but face challenges like limited donor availability and the risk of graft rejection. Therefore, new treatment methods are essential. This review examines the growing field of bioprinting and biofabrication in corneal tissue engineering. We begin by discussing various bioprinting methods such as stereolithography, inkjet, and extrusion printing, highlighting their strengths and weaknesses for eye-related uses. We also explore how biological tissues are made suitable for bioprinting through a process called decellularization, which can be achieved using chemical, physical, or biological methods. The review then looks at natural materials, known as bioinks, used in bioprinting. We focus on materials like gelatin, collagen, fibrin, chitin, chitosan, silk fibroin, and alginate, examining their mechanical and biological properties. The importance of hydrogel scaffolds, particularly those based on collagen and other materials, is also discussed in the context of repairing corneal tissue. Another key area we cover is the use of stem cells in corneal regeneration. We pay special attention to limbal epithelial stem cells and mesenchymal stromal cells, highlighting their roles in this process. The review concludes with an overview of the latest advancements in corneal tissue bioprinting, from early techniques to advanced methods of delivering stem cells using bioengineered materials. In summary, this review presents the current state and future potential of bioprinting and biofabrication in creating functional corneal tissues, highlighting new developments and ongoing challenges with a view towards restoring vision.
Collapse
Affiliation(s)
- Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Radha Kishnpura, Rajasthan, India
| | - Sharda Sambhakar
- Department of Pharmacy, Banasthali Vidyapith, Radha Kishnpura, Rajasthan, India
| | - Shailendra Paliwal
- Department of Pharmacy, L.L.R.M Medical College, Meerut, Uttar Pradesh, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Vandna Kalsi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
6
|
Wang H, Meng Z, Zhao CY, Xiao YH, Zeng H, Lian H, Guan RQ, Liu Y, Feng ZG, Han QQ. Research progress of implantation materials and its biological evaluation. Biomed Mater 2023; 18:062001. [PMID: 37591254 DOI: 10.1088/1748-605x/acf17b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
With the development of modern material science, life science and medical science, implantation materials are widely employed in clinical fields. In recent years, these materials have also evolved from inert supports or functional substitutes to bioactive materials able to trigger or promote the regenerative potential of tissues. Reasonable biological evaluation of implantation materials is the premise to make sure their safe application in clinical practice. With the continual development of implantation materials and the emergence of new implantation materials, new challenges to biological evaluation have been presented. In this paper, the research progress of implantation materials, the progress of biological evaluation methods, and also the characteristics of biocompatibility evaluation for novel implantation materials, like animal-derived implantation materials, nerve contact implantation materials, nanomaterials and tissue-engineered medical products were reviewed in order to provide references for the rational biological evaluation of implantable materials.
Collapse
Affiliation(s)
- Han Wang
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Zhu Meng
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Chen-Yu Zhao
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Yong-Hao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Hang Zeng
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
- China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Huan Lian
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Rui-Qin Guan
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
- Yantai University, Yantai 264005, People's Republic of China
| | - Yu Liu
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
- Yantai University, Yantai 264005, People's Republic of China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Qian-Qian Han
- National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| |
Collapse
|
7
|
Sundaran S, Kok LC, Chang HY. Fabrication and in vitroevaluation of photo cross-linkable silk fibroin-epsilon-poly-L-lysine hydrogel for wound repair. Biomed Mater 2023; 18:055021. [PMID: 37567188 DOI: 10.1088/1748-605x/acef86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
An optimal wound-healing hydrogel requires effective antibacterial properties and a favorable cell adhesion and proliferation environment. AlthoughBombyx morisilk fibroin (SF) possesses inherent wound-healing properties, it lacks these essential qualities. This study aimed to fabricate a novel photo-polymerizable hydrogel by utilizing SF's wound-healing efficiency and the epsilon-poly-L-lysine (EPL) antimicrobial activity. The SF was modified with three different concentrations of glycidyl methacrylate (GMA) to obtain SF-GMA(L), SF-GMA(M), and SF-GMA(H). A methacrylated EPL (EPL-GMA) was also produced. Then, SF-GMA was mixed with EPL-GMA to produce photo-crosslinkable SF-GMA-EPL hydrogels. The SF-GMA(L)-EPL, SF-GMA(M)-EPL, and SF-GMA(H)-EPL hydrogels, fabricated with 20% EPL-GMA, demonstrated maximum antimicrobial activity and mammalian cell adhesion ability. The hydroxyl radical (•OH) scavenging efficiency of the hydrogels was tested and shown to be between 69% and 74%. These hydrogels also exhibited 60% efficiency in removing bacterial lipopolysaccharides. The water absorption ability of the hydrogels was consistent with the size of their internal pores. The hydrogels exhibited a slow degradation fashion, and their degradation products appeared cytocompatible. Finally, the elastomeric properties of the hydrogels were determined, and a storage modulus (G') of 300-600 Pa was demonstrated. In conclusion, the hydrogels created in this study possess excellent biological and physical properties to support wound healing.
Collapse
Affiliation(s)
- Sneha Sundaran
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Li-Ching Kok
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsin Chu, Taiwan
| |
Collapse
|