1
|
Zhang F, Wang X, Wang L, Zheng B, Zhang Y, Pan L. Weissella cibaria FAFU821 improved bread quality based on the three-dimensional network structure of its exopolysaccharide. Food Chem 2025; 475:143336. [PMID: 39978028 DOI: 10.1016/j.foodchem.2025.143336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/06/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
This study aimed to comprehensively investigate the structure of purified exopolysaccharide EPS821-2, and the effect of Weissella cibaria FAFU821 on bread quality. Here, the findings determined that EPS821-2 was composed of 95.97 % glucose and 3.31 % mannose, with a molecular weight of 758.77 kDa. In addition, EPS821-2 was mainly composed of α-(1 → 6) linkages with branches containing α-(1 → 2), α-(1, 3 → 6), and α-(1, 4 → 6). Interestingly, EPS821-2 exhibited a three-dimensional structure, which led to the hypothesis that W. cibaria FAFU821 contributed to the quality of bread. The results revealed that W. cibaria FAFU821 enhanced the viscoelasticity of sourdough. It is remarkable that sourdough bread femented by W. cibaria FAFU821 had an excellent water holding capacity and lower hardness. In particular, W. cibaria FAFU821 increased the volatile profile of bread, including linoleic acid ethyl ester and acetic acid. This work provided the scientific insight for the applications of W. cibaria FAFU821 and its synthesized EPS821-2 in bakery innovation.
Collapse
Affiliation(s)
- Fan Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
| | - Xiaoying Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
2
|
Jamdar SN, Krishnan R, Rather SA, Sudesh, N M, Dhotare B. Identification and characterisation of dextran produced by a novel high yielding Weissella cibaria Fiplydextran strain. Int J Biol Macromol 2024; 282:136658. [PMID: 39442848 DOI: 10.1016/j.ijbiomac.2024.136658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
An exopolysaccharide (EPS)-producing bacterial strain was isolated from fermented soy milk and identified as Weissella cibaria strain Fiplydextran through morphological, biochemical and 16S rDNA sequence analysis. Here, we report the optimisation of cultural conditions for the organism to achieve maximum EPS production, along with its molecular characterisation, functional properties, and prebiotic potential. The exceptionally high EPS yield (0.61 g per g of sucrose) was obtained from the optimised medium (200 g/L of sucrose, 15 g/L of yeast extract) at 30 °C after 48 h. HPAEC-PAD analysis revealed that the EPS is homopolymer of glucose having Mw as 3.23 × 107 Da determined using viscosity method. Methylation analysis and NMR results confirmed the EPS as dextran with α (1 → 6)-linkage (96.5 %) as main chain and α (1 → 3)- as branch chain linkage (3.5 %). Thermogravimetric analysis exhibited higher thermal stability of EPS. The EPS was observed to support the growth of Bacteroides spp. in pure culture form but not that of Lactobacillus or Bifidobacterium spp. However, a low level of bifidogenic activity was observed upon use of mixed culture of B. fragilis and B. longum. The research implies industrial applications of W. cibaria Fiplydextran for the production of high molecular weight dextran with better yield.
Collapse
Affiliation(s)
- Sahayog N Jamdar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India.
| | - Rateesh Krishnan
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sarver Ahmed Rather
- ApSD, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India
| | - Sudesh
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India
| | - Mallikarjunan N
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Life Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India
| | - Bhaskar Dhotare
- Bio-organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
3
|
Zhou B, Wang C, Yang Y, Yu W, Bin X, Song G, Du R. Structural Characterization and Biological Properties Analysis of Exopolysaccharides Produced by Weisella cibaria HDL-4. Polymers (Basel) 2024; 16:2314. [PMID: 39204534 PMCID: PMC11360005 DOI: 10.3390/polym16162314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
An exopolysaccharide (EPS)-producing strain, identified as Weissella cibaria HDL-4, was isolated from litchi. After separation and purification, the structure and properties of HDL-4 EPS were characterized. The molecular weight of HDL-4 EPS was determined to be 1.9 × 10⁶ Da, with glucose as its monosaccharide component. Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analyses indicated that HDL-4 EPS was a D-glucan with α-(1→6) and α-(1→4) glycosidic bonds. X-ray diffraction (XRD) analysis revealed that HDL-4 EPS was amorphous. Scanning electron microscope (SEM) and atomic force microscope (AFM) observations showed that HDL-4 EPS possesses pores, irregular protrusions, and a smooth layered structure. Additionally, HDL-4 EPS demonstrated significant thermal stability, remaining stable below 288 °C. It exhibited a strong metal ion adsorption activity, emulsification activity, antioxidant activity, and water-retaining property. Therefore, HDL-4 EPS can be extensively utilized in the food and pharmaceutical industries as an additive and prebiotic.
Collapse
Affiliation(s)
- Bosen Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (B.Z.); (Y.Y.); (W.Y.)
| | - Changli Wang
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China; (C.W.); (X.B.)
| | - Yi Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (B.Z.); (Y.Y.); (W.Y.)
| | - Wenna Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (B.Z.); (Y.Y.); (W.Y.)
| | - Xiaoyun Bin
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China; (C.W.); (X.B.)
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (B.Z.); (Y.Y.); (W.Y.)
| | - Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (B.Z.); (Y.Y.); (W.Y.)
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Zhang F, Wang L, Zhang Z, Zheng B, Zhang Y, Pan L. A novel exopolysaccharide from Weissella cibaria FAFU821: Structural characterization and cryoprotective activity. Food Chem X 2023; 20:100955. [PMID: 38144786 PMCID: PMC10740096 DOI: 10.1016/j.fochx.2023.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 12/26/2023] Open
Abstract
Exopolysaccharides produced by Weissella cibaria has attracted increasing attention owing to their biological activity. Here, a strain was isolated from the home-made fermented octopus, which was identified as W. cibaria FAFU821. In addition, the polysaccharide were isolated and purified by cellulose DE-52 column and Sephadex G-100 column, and named EPS821-1. In this work, the structure of EPS821-1 and its cryoprotective activity on Bifidobacterium longum subsp. longum F2 were investigated in vitro. These results suggested that the EPS821-1 is a novel glucan, which mainly consists of α-(1 → 6) linkage with α-(1 → 4), α-(1 → 4,6) and α-(1 → 3,6) residue as branches. In addition, EPS821-1 existed the three-dimensional network structure and exhibited the excellent cryoprotective activities for B. longum subsp. longum F2, which was 2.75 folds higher than that of the controls. This study provided scientific evidence and insights for the application of EPS821-1 as cryoprotection in food field.
Collapse
Affiliation(s)
- Fan Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lin Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lei Pan
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
5
|
Fusco V, Chieffi D, Fanelli F, Montemurro M, Rizzello CG, Franz CMAP. The Weissella and Periweissella genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential. Front Microbiol 2023; 14:1289937. [PMID: 38169702 PMCID: PMC10758620 DOI: 10.3389/fmicb.2023.1289937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | | |
Collapse
|
6
|
Xie Y, Pei F, Liu Y, Liu Z, Chen X, Xue D. Fecal fermentation and high-fat diet-induced obesity mouse model confirmed exopolysaccharide from Weissella cibaria PFY06 can ameliorate obesity by regulating the gut microbiota. Carbohydr Polym 2023; 318:121122. [PMID: 37479437 DOI: 10.1016/j.carbpol.2023.121122] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 07/23/2023]
Abstract
Obesity associated with diet and intestinal dysbiosis is a worldwide public health crisis, and exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) have prebiotic potential to ameliorate obesity. Therefore, the present study obtained LAB with the ability to produce high EPS, examined the structure of EPS, and explained its mechanism of alleviating obesity by in vivo and in vitro models. The results showed that Weissella cibaria PFY06 with a high EPS yield was isolated from strawberry juice, and pure polysaccharide (PFY06-EPS) was purified by Sephadex G-100. The structural characteristics of PFY06-EPS showed that the molecular weight was 8.08 × 106 Da and composed of α-(1,6)-D glucosyl residues. An in vitro simulated human colon fermentation test demonstrated that PFY06-EPS increased the abundance of Prevotella and Bacteroides. Cell tests confirmed that PFY06-EPS after fecal fermentation inhibited fat accumulation by promoting the secretion of endogenous gastrointestinal hormones and insulin and inhibiting the secretion of inflammatory factors. Notably, PFY06-EPS reduced weight gain, fat accumulation, inflammatory reactions and insulin resistance in a high-fat diet-induced obesity mouse model and improved glucolipid metabolism. PFY06-EPS intervention reversed obesity-induced microflora disorders, such as reducing the Firmicutes/Bacteroides ratio and increasing butyrate-producing bacteria (Roseburia and Oscillibacter), and reduced endotoxemia to maintain intestinal barrier integrity. Therefore, in vivo and in vitro models showed that PFY06-EPS had potential as a prebiotic that may play an anti-obesity role by improving the function of the gut microbiota.
Collapse
Affiliation(s)
- Yinzhuo Xie
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Fangyi Pei
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China.
| | - Yuchao Liu
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China
| | - Zhenyan Liu
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China
| | - Xiaoting Chen
- Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China
| | - Di Xue
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| |
Collapse
|
7
|
Nakata H, Imamura Y, Saha S, Lobo RE, Kitahara S, Araki S, Tomokiyo M, Namai F, Hiramitsu M, Inoue T, Nishiyama K, Villena J, Kitazawa H. Partial Characterization and Immunomodulatory Effects of Exopolysaccharides from Streptococcus thermophilus SBC8781 during Soy Milk and Cow Milk Fermentation. Foods 2023; 12:2374. [PMID: 37372583 DOI: 10.3390/foods12122374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The immunomodulatory properties of exopolysaccharides (EPSs) produced by Streptococcus thermophilus have not been explored in depth. In addition, there are no comparative studies of the functional properties of EPSs produced by streptococci in different food matrices. In this work, EPSs from S. thermophilus SBC8781 were isolated after soy milk (EPS-s) or cow milk (EPS-m) fermentation, identified, and characterized in their abilities to modulate immunity in porcine intestinal epithelial cells. Fresh soy milk and cow milk were inoculated with S. thermophilus SBC8781 (7 log CFU/mL) and incubated at 37 °C for 24 h. The extraction of EPSs was performed by the ethanol precipitation method. Analytical techniques, including NMR, UV-vis spectroscopy, and chromatography, identified and characterized both biopolymer samples as polysaccharides with high purity levels and similar Mw. EPS-s and EPS-m had heteropolysaccharide structures formed by galactose, glucose, rhamnose, ribose, and mannose, although with different monomer proportions. On the other hand, EPS-s had higher quantities of acidic polymer than EPS-m. The biopolymer production of the SBC8781 strain from the vegetable culture broth was 200-240 mg/L, which was higher than that produced in milk, which reached concentrations of 50-70 mg/L. For immunomodulatory assays, intestinal epithelial cells were stimulated with 100 µg/mL of EPS-s or EPS-m for 48 h and then stimulated with the Toll-like receptor 3 agonist poly(I:C). EPS-s significantly reduced the expression of IL-6, IFN-β, IL-8, and MCP-1 and increased the negative regulator A20 in intestinal epithelial cells. Similarly, EPS-m induced a significant reduction of IL-6 and IL-8 expressions, but its effect was less remarkable than that caused by EPS-s. Results indicate that the structure and the immunomodulatory activity of EPSs produced by the SBC8781 strain vary according to the fermentation substrate. Soy milk fermented with S. thermophilus SBC8781 could be a new immunomodulatory functional food, which should be further evaluated in preclinical trials.
Collapse
Affiliation(s)
- Hajime Nakata
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Pokka Sapporo Food and Beverage Ltd., Nagoya 460-0008, Japan
| | - Yoshiya Imamura
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Sudeb Saha
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - René Emanuel Lobo
- Institute of Analytical Chemistry (Cátedra de Química Analítica III), Faculty of Biochemistry, Chemistry, and Pharmacy, National University of Tucumán, Tucuman 4000, Argentina
| | - Shugo Kitahara
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Shota Araki
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | | | - Takashi Inoue
- Pokka Sapporo Food and Beverage Ltd., Nagoya 460-0008, Japan
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
8
|
Liao B, Ma S, Zhang S, Li X, Quan R, Wan S, Guo X. Fructus cannabis protein extract powder as a green and high effective corrosion inhibitor for Q235 carbon steel in 1 M HCl solution. Int J Biol Macromol 2023; 239:124358. [PMID: 37028615 DOI: 10.1016/j.ijbiomac.2023.124358] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
The Fructus cannabis protein extract powder (FP), was firstly used as a green and high effective corrosion inhibitor through a simple water-extraction method. The composition and surface property of FP were characterized by FTIR, LC/MS, UV, XPS, water contact angle and AFM force-curve measurements. Results indicate that FP contains multiply functional groups, such as NH, CO, CN, CO, etc. The adsorption of FP on the carbon steel surface makes it higher hydrophobicity and adhesion force. The corrosion inhibition performance of FP was researched by electrochemical impedance, polarization curve and differential capacitance curve. Moreover, the inhibitive stability of FP, and the effects of temperature and chloride ion on its inhibition property were also investigated. The above results indicate that the FP exhibits excellent corrosion inhibition efficiency (~98 %), and possesses certain long-term inhibitive stability with inhibition efficiency higher than 90 % after 240 h immersion in 1 M HCl solution. The high temperature brings about the FP desorption on the carbon steel surface, while high concentration of chloride ion facilitates the FP adsorption. The adsorption mechanism of FP follows the Langmuir isotherm adsorption. This work will provide an insight for protein as a green corrosion inhibitor.
Collapse
Affiliation(s)
- Bokai Liao
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou 510006, China
| | - Shiquan Ma
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou 510006, China
| | - Siying Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xingxing Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ruixuan Quan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou 510006, China
| | - Shan Wan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou 510006, China.
| | - Xingpeng Guo
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Guo R, Sun X, Kou Y, Song H, Li X, Song L, Zhao T, Zhang H, Li D, Liu Y, Song Z, Wu J, Wu Y. Hydrophobic aggregation via partial Gal removal affects solution characteristics and fine structure of tamarind kernel polysaccharides. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|