1
|
Dubashynskaya NV, Bokatyi AN, Trulioff AS, Rubinstein AA, Novikova VP, Petrova VA, Vlasova EN, Malkov AV, Kudryavtsev IV, Skorik YA. Delivery system for dexamethasone phosphate based on a Zn 2+-crosslinked polyelectrolyte complex of diethylaminoethyl chitosan and chondroitin sulfate. Carbohydr Polym 2025; 348:122899. [PMID: 39567135 DOI: 10.1016/j.carbpol.2024.122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Hybrid nano- and microparticles based on metal ion crosslinked biopolymers are promising carriers for the development of drug delivery systems with improved biopharmaceutical properties. In this work, dexamethasone phosphate-containing particles based on chondroitin sulfate and chitosan or diethylaminoethyl chitosan additionally crosslinked with Zn2+ were prepared. Depending on the polycation/polyanion ratio in the system, anionic and cationic polyelectrolyte complexes (PECs) were obtained. The anionic Zn2+-containing and Zn2+-free PECs had sizes of 154 and 180 nm and ζ-potentials of -22.4 and -27.5 mV, respectively. The cationic Zn2+-containing and Zn2+-free PECs had sizes of 242 and 362 nm and ζ-potentials of 22.4 and 24.7 mV, respectively. The presence of Zn2+ in the system significantly prolonged the release of dexamethasone phosphate from the hybrid polyelectrolyte particle. The resulting release profiles of dexamethasone phosphate were in agreement with the Peppas-Sahlin kinetic model, which considers the combined effects of Fickian diffusion and polymer chain relaxation on the drug release rate. It was shown that the prolongation of drug release was mainly due to swelling and relaxation of the Zn2+ crosslinked polymers. The developed particles exhibited good mucoadhesive properties and pronounced anti-inflammatory activity, making them attractive candidates for biomedical applications.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Anton N Bokatyi
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Andrey S Trulioff
- Institute of Experimental Medicine, Acad. Pavlov St. 12, Saint Petersburg 197376, Russia
| | - Artem A Rubinstein
- Institute of Experimental Medicine, Acad. Pavlov St. 12, Saint Petersburg 197376, Russia
| | - Veronika P Novikova
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Valentina A Petrova
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Elena N Vlasova
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Alexey V Malkov
- Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163000 Arkhangelsk, Russia
| | - Igor V Kudryavtsev
- Institute of Experimental Medicine, Acad. Pavlov St. 12, Saint Petersburg 197376, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds, Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov, National Research Centre «Kurchatov Institute», Bolshoi VO 31, St. Petersburg 199004, Russia.
| |
Collapse
|
2
|
Wu Y, Zhao S, Wang J, Chen Y, Li H, Li JP, Kan Y, Zhang T. Methods for determining the structure and physicochemical properties of hyaluronic acid and its derivatives: A review. Int J Biol Macromol 2024; 282:137603. [PMID: 39542327 DOI: 10.1016/j.ijbiomac.2024.137603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Hyaluronic acid (HA) is a linear high molecular weight polymer ubiquitously distributed in humans and animals. The D-glucuronic acid and N-acetyl-D-glucosamine repeating disaccharide backbone along with variable secondary and tertiary structures endows HA with unique rheological characteristics as well as diverse biological functions such as maintaining tissue homeostasis and mediating cell functions. Due to its excellent biocompatibility, biodegradability, viscoelasticity and moisturizing properties, natural HA and its chemically modified derivatives are widely used in medical, pharmaceutical, food and cosmetic industries. For broad application purposes, abundant HA-based biochemical products have been developed, including the methodologies for characterization of these products. This review provides an overview focusing on the methods used for determining HA structure as well as the strategies for constructing its derivatives. Apart from the analytical approaches for defining the physicochemical properties of HA (e.g., molecular weight, rheology and swelling capacity), quantitative methods for assessing the purity of HA-based materials are discussed. In addition, the biological functions and potential applications of HA and its derivatives are briefly embarked and perspectives in methodological development are discussed.
Collapse
Affiliation(s)
- Yiyang Wu
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Siran Zhao
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Jiandong Wang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Yujuan Chen
- Bloomage Biotechnology Corporation Limited, Jinan, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden.
| | - Ying Kan
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China.
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China.
| |
Collapse
|
3
|
Stepanova M, Levit M, Egorova T, Nashchekina Y, Sall T, Demyanova E, Guryanov I, Korzhikova-Vlakh E. Poly(2-Deoxy-2-Methacrylamido-D-Glucose)-Based Complex Conjugates of Colistin, Deferoxamine and Vitamin B12: Synthesis and Biological Evaluation. Pharmaceutics 2024; 16:1080. [PMID: 39204425 PMCID: PMC11359296 DOI: 10.3390/pharmaceutics16081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Growing resistance to traditional antibiotics poses a global threat to public health. In this regard, modification of known antibiotics, but with limited applications due to side effects, is one of the extremely promising approaches at present. In this study, we proposed the synthesis of novel complex polymeric conjugates of the peptide antibiotic colistin (CT). A biocompatible and water-soluble synthetic glycopolymer, namely, poly(2-deoxy-2-methacrylamido-D-glucose) (PMAG), was used as a polymer carrier. In addition to monoconjugates containing CT linked to PMAG by hydrolyzable and stable bonds, a set of complex conjugates also containing the siderophore deferoxamine (DFOA) and vitamin B12 was developed. The structures of the conjugates were confirmed by 1H NMR and FTIR-spectroscopy, while the compositions of conjugates were determined by UV-Vis spectrophotometry and HPLC analysis. The buffer media with pH 7.4, corresponding to blood or ileum pH, and 5.2, corresponding to the intestinal pH after ingestion or pH in the focus of inflammation, were used to study the release of CT. The resulting conjugates were examined for cytotoxicity and antimicrobial activity. All conjugates showed less cytotoxicity than free colistin. A Caco-2 cell permeability assay was carried out for complex conjugates to simulate the drug absorption in the intestine. In contrast to free CT, which showed very low permeability through the Caco-2 monolayer, the complex polymeric conjugates of vitamin B12 and CT provided significant transport. The antimicrobial activity of the conjugates depended on the conjugate composition. It was found that conjugates containing CT linked to the polymer by a hydrolyzable bond were found to be more active than conjugates with a non-hydrolyzable bond between CT and PMAG. Conjugates containing DFOA complexed with Fe3+ were characterized by enhanced antimicrobial activity against Pseudomonas aeruginosa compared to other conjugates.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds of Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (M.L.)
| | - Mariia Levit
- Institute of Macromolecular Compounds of Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (M.L.)
| | - Tatiana Egorova
- Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.E.); (E.D.)
| | - Yulia Nashchekina
- Institute of Cytology of Russian Academy of Sciences, 194064 St. Petersburg, Russia;
| | - Tatiana Sall
- Institute of Experimental Medicine, 197022 St. Petersburg, Russia;
| | - Elena Demyanova
- Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.E.); (E.D.)
| | - Ivan Guryanov
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds of Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (M.L.)
| |
Collapse
|
4
|
Bokatyi AN, Dubashynskaya NV, Skorik YA. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr Polym 2024; 337:122145. [PMID: 38710553 DOI: 10.1016/j.carbpol.2024.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.
Collapse
Affiliation(s)
- Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
5
|
Vogelaar T, Agger AE, Reseland JE, Linke D, Jenssen H, Lund R. Crafting Stable Antibiotic Nanoparticles via Complex Coacervation of Colistin with Block Copolymers. Biomacromolecules 2024; 25:4267-4280. [PMID: 38886154 PMCID: PMC11238337 DOI: 10.1021/acs.biomac.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
To combat the ever-growing increase of multidrug-resistant (MDR) bacteria, action must be taken in the development of antibiotic formulations. Colistin, an effective antibiotic, was found to be nephrotoxic and neurotoxic, consequently leading to a ban on its use in the 1980s. A decade later, colistin use was revived and nowadays used as a last-resort treatment against Gram-negative bacterial infections, although highly regulated. If cytotoxicity issues can be resolved, colistin could be an effective option to combat MDR bacteria. Herein, we investigate the complexation of colistin with poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMAA) block copolymers to form complex coacervate core micelles (C3Ms) to ultimately improve colistin use in therapeutics while maintaining its effectiveness. We show that well-defined and stable micelles can be formed in which the cationic colistin and anionic PMAA form the core while PEO forms a protecting shell. The resulting C3Ms are in a kinetically arrested and stable state, yet they can be made reproducibly using an appropriate experimental protocol. By characterization through dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), we found that the best C3M formulation, based on long-term stability and complexation efficiency, is at charge-matching conditions. This nanoparticle formulation was compared to noncomplexed colistin on its antimicrobial properties, enzymatic degradation, serum protein binding, and cytotoxicity. The studies indicate that the antimicrobial properties and cytotoxicity of the colistin-C3Ms were maintained while protein binding was limited, and enzymatic degradation decreased after complexation. Since colistin-C3Ms were found to have an equal effectivity but with increased cargo protection, such nanoparticles are promising components for the antibiotic formulation toolbox.
Collapse
Affiliation(s)
- Thomas
D. Vogelaar
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Anne E. Agger
- Department
of Biomaterials, Institute of Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Janne E. Reseland
- Department
of Biomaterials, Institute of Clinical Dentistry, University of Oslo, P.O. Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Dirk Linke
- Department
of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Håvard Jenssen
- Department
of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Reidar Lund
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
- Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, NO-0315 Oslo, Norway
| |
Collapse
|
6
|
Verdoliva V, Muzio G, Autelli R, Saviano M, Bedini E, De Luca S. Microwave-Assisted, Solid-State Procedure to Covalently Conjugate Hyaluronic Acid to Curcumin: Validation of a Green Synthetic Protocol. ACS POLYMERS AU 2024; 4:214-221. [PMID: 38882036 PMCID: PMC11177298 DOI: 10.1021/acspolymersau.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 06/18/2024]
Abstract
A microwave-assisted esterification reaction to prepare hyaluronan-curcumin derivatives by employing a solvent-free process was developed. In particular, a solid-state strategy to react two molecules characterized by totally different solubility profiles was developed. Hyaluronic acid, a highly hydrosoluble polysaccharide, was reacted with hydrophobic and even water-unstable curcumin. Microwave (MW) irradiation was employed to activate the reaction between the two solid compounds through the direct interaction with them and to preserve the integrity of the sensitive curcumin species. This new protocol can be considered efficient, fast, and also eco-friendly, avoiding the employment of toxic organic bases and solvents. A cytotoxicity test suggested that the developed hyaluronan-curcumin conjugate (HA-CUR) could be considered a candidate for its implementation as a new material. In addition, preliminary studies revealed promising anti-inflammatory activity and open future perspectives of further investigation.
Collapse
Affiliation(s)
- Valentina Verdoliva
- Institute of Biostructures and Bioimaging, National Research Council, 80131 Naples, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council, 81100 Caserta, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Stefania De Luca
- Institute of Biostructures and Bioimaging, National Research Council, 80131 Naples, Italy
| |
Collapse
|
7
|
Dubashynskaya NV, Bokatyi AN, Sall TS, Egorova TS, Demyanova EV, Dubrovskii YA, Murashko EA, Anufrikov YA, Shasherina AY, Vlasova EN, Skorik YA. Hyaluronan/B12-chitosan polyelectrolyte complex for oral colistin administration. Int J Biol Macromol 2024; 263:130177. [PMID: 38360229 DOI: 10.1016/j.ijbiomac.2024.130177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Polyelectrolyte complexes (PECs) based on polysaccharides, including hyaluronic acid (HA) and chitosan (CS), are promising delivery systems for antimicrobial agents, including oral administration of the peptide antibiotic colistin (CT). Modification of CS with different targeting ligands to improve intestinal permeability is a suitable way to improve the oral bioavailability of polyelectrolyte particles. This study describes the procedure for obtaining CT-containing PECs based on HA and CS modified with cyanocobalamin (vitamin B12). In this case, vitamin B12 is used as a targeting ligand because it is absorbed in the ileum via specific transporter proteins. The resulting PECs had a hydrodynamic size of about 284 nm and a positive ζ-potential of about 26 mV; the encapsulation efficiency was 88.2 % and the CT content was 42.2 μg/mg. The developed systems provided a two-phase drug release: about 50 % of the CT was released in 0.5-1 h, and about 60 % of the antibiotic was cumulatively released in 5 h. The antimicrobial activity of encapsulated CT was maintained at the same level as the pure drug for at least 24 h (minimum inhibitory concentration against Pseudomonas aeruginosa was 2 μg/mL for both). In addition, the apparent permeability coefficient of CT in the PEC formulation was 2.4 × 10-6 cm/s. Thus, the incorporation of CT into HA- and vitamin B12-modified CS-based PECs can be considered as a simple and convenient method to improve the oral delivery of CT.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Tatiana S Sall
- Institute of Experimental Medicine, Acad. Pavlov St. 12, Saint Petersburg 197376, Russia
| | - Tatiana S Egorova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russia
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russia
| | - Yaroslav A Dubrovskii
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation
| | - Ekaterina A Murashko
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation
| | - Yuri A Anufrikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia
| | - Anna Y Shasherina
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia
| | - Elena N Vlasova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia.
| |
Collapse
|
8
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. Current issues and potential solutions for the electrospinning of major polysaccharides and proteins: A review. Int J Biol Macromol 2023; 253:126735. [PMID: 37690643 DOI: 10.1016/j.ijbiomac.2023.126735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Biopolymers, especially polysaccharides and proteins, are the promising green replacement for petroleum based polymers. Due to their innate properties, they are effectively used in biomedical applications, especially tissue engineering, wound healing, and drug delivery. The fibrous morphology of biopolymers is essentially required for the effectiveness in these biomedical applications. Electrospinning (ES) is the most advanced and robust method to fabricate nanofibers (NFs) and provides a complete solution to the conventional methods issues. However, the major issues regarding fabricating polysaccharides and protein nanofibers using ES include poor electrospinnability, lack of desired fundamental properties for a specific application by a single biopolymer, and insolubility among common solvents. The current review provides the main strategies for effective electrospinning of the major biopolymers. The key strategies include blending major biopolymers with suitable biopolymers and optimizing the solvent system. A systematic literature review was done to provide the optimized solvent system of the major biopolymers along with their best possible biopolymeric blend for ES. The review also highlights the fundamental issues with the commercialization of ES based biomedical products and provides future directions to improve the fabrication of biopolymeric nanofibers.
Collapse
Affiliation(s)
- Murtaza Haider Syed
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia
| | - Md Maksudur Rahman Khan
- Petroleum and Chemical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong BE1410, Brunei
| | - Mior Ahmad Khushairi Mohd Zahari
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| | | | - Norhayati Abdullah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| |
Collapse
|
9
|
Dubashynskaya NV, Bokatyi AN, Trulioff AS, Rubinstein AA, Kudryavtsev IV, Skorik YA. Development and Bioactivity of Zinc Sulfate Cross-Linked Polysaccharide Delivery System of Dexamethasone Phosphate. Pharmaceutics 2023; 15:2396. [PMID: 37896156 PMCID: PMC10610283 DOI: 10.3390/pharmaceutics15102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Improving the biopharmaceutical properties of glucocorticoids (increasing local bioavailability and reducing systemic toxicity) is an important challenge. The aim of this study was to develop a dexamethasone phosphate (DexP) delivery system based on hyaluronic acid (HA) and a water-soluble cationic chitosan derivative, diethylaminoethyl chitosan (DEAECS). The DexP delivery system was a polyelectrolyte complex (PEC) resulting from interpolymer interactions between the HA polyanion and the DEAECS polycation with simultaneous incorporation of zinc ions as a cross-linking agent into the complex. The developed PECs had a hydrodynamic diameter of 244 nm and a ζ-potential of +24.4 mV; the encapsulation efficiency and DexP content were 75.6% and 45.4 μg/mg, respectively. The designed DexP delivery systems were characterized by both excellent mucoadhesion and prolonged drug release (approximately 70% of DexP was released within 10 h). In vitro experiments showed that encapsulation of DexP in polysaccharide nanocarriers did not reduce its anti-inflammatory activity compared to free DexP.
Collapse
Affiliation(s)
- Natallia V. Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 Saint Petersburg, Russia; (A.N.B.); (Y.A.S.)
| | - Anton N. Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 Saint Petersburg, Russia; (A.N.B.); (Y.A.S.)
| | - Andrey S. Trulioff
- Institute of Experimental Medicine, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia; (A.S.T.); (A.A.R.); (I.V.K.)
| | - Artem A. Rubinstein
- Institute of Experimental Medicine, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia; (A.S.T.); (A.A.R.); (I.V.K.)
| | - Igor V. Kudryavtsev
- Institute of Experimental Medicine, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia; (A.S.T.); (A.A.R.); (I.V.K.)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 Saint Petersburg, Russia; (A.N.B.); (Y.A.S.)
| |
Collapse
|
10
|
Graciela CQ, José Juan EC, Gieraldin CL, Xóchitl Alejandra PM, Gabriel AÁ. Hyaluronic Acid-Extraction Methods, Sources and Applications. Polymers (Basel) 2023; 15:3473. [PMID: 37631529 PMCID: PMC10459667 DOI: 10.3390/polym15163473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In this review, a compilation of articles in databases on the extraction methods and applications of hyaluronic acid (HA) was carried out. HA is a highly hydrated component of different tissues, including connective, epithelial, and neural. It is an anionic, linear glycosaminoglycan (GAG) primarily found in the native extracellular matrix (ECM) of soft connective tissues. Included in the review were studies on the extraction methods (chemical, enzymatical, combined) of HA, describing advantages and disadvantages as well as news methods of extraction. The applications of HA in food are addressed, including oral supplementation, biomaterials, medical research, and pharmaceutical and cosmetic industry applications. Subsequently, we included a section related to the structure and penetration routes of the skin, with emphasis on the benefits of systems for transdermal drug delivery nanocarriers as promoters of percutaneous absorption. Finally, the future trends on the applications of HA were included. This final section contains the effects before, during, and after the application of HA-based products.
Collapse
Affiliation(s)
- Callejas-Quijada Graciela
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
| | - Escobar-Chávez José Juan
- Unidad de Investigación Multidisciplinaria, Laboratorio 12: Sistemas Transdérmicos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54714, Estado de México, Mexico;
| | - Campos-Lozada Gieraldin
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
| | - Pérez-Marroquín Xóchitl Alejandra
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
| | - Aguirre-Álvarez Gabriel
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico; (C.-Q.G.); (C.-L.G.); (P.-M.X.A.)
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, Tulancingo C.P. 43684, Hidalgo, Mexico
| |
Collapse
|
11
|
Dubashynskaya NV, Bokatyi AN, Sall TS, Egorova TS, Nashchekina YA, Dubrovskii YA, Murashko EA, Vlasova EN, Demyanova EV, Skorik YA. Cyanocobalamin-Modified Colistin-Hyaluronan Conjugates: Synthesis and Bioactivity. Int J Mol Sci 2023; 24:11550. [PMID: 37511308 PMCID: PMC10380726 DOI: 10.3390/ijms241411550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Polymeric drug delivery systems enhance the biopharmaceutical properties of antibiotics by increasing their bioavailability, providing programmable and controlled-release properties, and reducing toxicity. In addition, drug delivery systems are a promising strategy to improve the intestinal permeability of various antimicrobial agents, including colistin (CT). This study describes the modification of conjugates based on CT and hyaluronic acid (HA) with cyanocobalamin (vitamin B12). Vitamin B12 was chosen as a targeting ligand because it has its own absorption pathway in the small intestine. The resulting polysaccharide conjugates contained 95 μg/mg vitamin B12 and the CT content was 335 μg/mg; they consisted of particles of two sizes, 98 and 702 nm, with a ζ-potential of approximately -25 mV. An in vitro release test at pH 7.4 and pH 5.2 showed an ultra-slow release of colistin of approximately 1% after 10 h. The modified B12 conjugates retained their antimicrobial activity at the level of pure CT (minimum inhibitory concentration was 2 μg/mL). The resulting delivery systems also reduced the nephrotoxicity of CT by 30-40% (HEK 293 cell line). In addition, the modification of B12 improved the intestinal permeability of CT, and the apparent permeability coefficient of HA-CT-B12 conjugates was 3.5 × 10-6 cm/s, corresponding to an in vivo intestinal absorption of 50-100%. Thus, vitamin-B12-modified conjugates based on CT and HA may be promising oral delivery systems with improved biopharmaceutical properties.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Tatiana S Sall
- Institute of Experimental Medicine, Acad. Pavlov St. 12, St. Petersburg 197376, Russia
| | - Tatiana S Egorova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St. Petersburg 197110, Russia
| | - Yuliya A Nashchekina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, St. Petersburg 194064, Russia
| | - Yaroslav A Dubrovskii
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russia
| | - Ekaterina A Murashko
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russia
| | - Elena N Vlasova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St. Petersburg 197110, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia
| |
Collapse
|
12
|
Dvoretckaia A, Egorova T, Dzhuzha A, Levit M, Sivtsov E, Demyanova E, Korzhikova-Vlakh E. Polymyxin B Conjugates with Bio-Inspired Synthetic Polymers of Different Nature. Int J Mol Sci 2023; 24:ijms24031832. [PMID: 36768160 PMCID: PMC9915011 DOI: 10.3390/ijms24031832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
The emergence and growth of bacterial resistance to antibiotics poses an enormous threat to humanity in the future. In this regard, the discovery of new antibiotics and the improvement of existing ones is a priority task. In this study, we proposed the synthesis of new polymeric conjugates of polymyxin B, which is a clinically approved but limited-use peptide antibiotic. In particular, three carboxylate-bearing polymers and one synthetic glycopolymer were selected for conjugation with polymyxin B (PMX B), namely, poly(α,L-glutamic acid) (PGlu), copolymer of L-glutamic acid and L-phenylalanine (P(Glu-co-Phe)), copolymer of N-vinyl succinamic acid and N-vinylsuccinimide (P(VSAA-co-VSI)), and poly(2-deoxy-2-methacrylamido-D-glucose) (PMAG). Unlike PGlu and PMAG, P(Glu-co-Phe) and P(VSAA-co-VSI) are amphiphilic and form nanoparticles in aqueous media. A number of conjugates with different polymyxin B loading were synthesized and characterized. In addition, the complex conjugates of PGLu or PMAG with polymyxin B and deferoxamine (siderophore) were obtained. A release of PMX B from Schiff base and amide-linked polymer conjugates was studied in model buffer media with pH 7.4 and 5.8. In both cases, a more pronounced release was observed under slightly acidic conditions. The cytotoxicity of free polymers and PMX B as well as their conjugates was examined in human embryonic kidney cells (HEK 293T cell line). All conjugates demonstrated reduced cytotoxicity compared to the free antibiotic. Finally, the antimicrobial efficacy of the conjugates against Pseudomonas aeruginosa was determined and compared. The lowest values of minimum inhibitory concentrations (MIC) were observed for polymyxin B and polymyxin B/deferoxamine conjugated with PMAG. Among the polymers tested, PMAG appears to be the most promising carrier for delivery of PMX B in conjugated form due to the good preservation of the antimicrobial properties of PMX B and the ability of controlled drug release.
Collapse
Affiliation(s)
- Anna Dvoretckaia
- Institute of Chemistry, Saint-Petersburg State University, 198504 St. Petersburg, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Tatiana Egorova
- State Research Institute of Highly Pure Biopreparations FMBA of Russia, 197110 St. Petersburg, Russia
| | - Apollinariia Dzhuzha
- Institute of Chemistry, Saint-Petersburg State University, 198504 St. Petersburg, Russia
| | - Mariia Levit
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Eugene Sivtsov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Department of Physical Chemistry, Saint-Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia
| | - Elena Demyanova
- State Research Institute of Highly Pure Biopreparations FMBA of Russia, 197110 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
13
|
Dubashynskaya NV, Bokatyi AN, Dobrodumov AV, Kudryavtsev IV, Trulioff AS, Rubinstein AA, Aquino AD, Dubrovskii YA, Knyazeva ES, Demyanova EV, Nashchekina YA, Skorik YA. Succinyl Chitosan-Colistin Conjugates as Promising Drug Delivery Systems. Int J Mol Sci 2022; 24:ijms24010166. [PMID: 36613610 PMCID: PMC9820547 DOI: 10.3390/ijms24010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The growth of microbial multidrug resistance is a problem in modern clinical medicine. Chemical modification of active pharmaceutical ingredients is an attractive strategy to improve their biopharmaceutical properties by increasing bioavailability and reducing drug toxicity. Conjugation of antimicrobial drugs with natural polysaccharides provides high efficiency of these systems due to targeted delivery, controlled drug release and reduced toxicity. This paper reports a two-step synthesis of colistin conjugates (CT) with succinyl chitosan (SucCS); first, we modified chitosan with succinyl anhydride to introduce a carboxyl function into the polymer molecule, which was then used for chemical grafting with amino groups of the peptide antibiotic CT using carbodiimide chemistry. The resulting polymeric delivery systems had a degree of substitution (DS) by CT of 3-8%, with conjugation efficiencies ranging from 54 to 100% and CT contents ranging from 130-318 μg/mg. The size of the obtained particles was 100-200 nm, and the ζ-potential varied from -22 to -28 mV. In vitro release studies at pH 7.4 demonstrated ultra-slow hydrolysis of amide bonds, with a CT release of 0.1-0.5% after 12 h; at pH 5.2, the hydrolysis rate slightly increased; however, it remained extremely low (1.5% of CT was released after 12 h). The antimicrobial activity of the conjugates depended on the DS. At DS 8%, the minimum inhibitory concentration (MIC) of the conjugate was equal to the MIC of native CT (1 µg/mL); at DS of 3 and 5%, the MIC increased 8-fold. In addition, the developed systems reduced CT nephrotoxicity by 20-60%; they also demonstrated the ability to reduce bacterial lipopolysaccharide-induced inflammation in vitro. Thus, these promising CT-SucCS conjugates are prospective for developing safe and effective nanoantibiotics.
Collapse
Affiliation(s)
- Natallia V. Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Anton N. Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Anatoliy V. Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Igor V. Kudryavtsev
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| | - Andrey S. Trulioff
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| | - Artem A. Rubinstein
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| | - Arthur D. Aquino
- Almazov National Medical Research Centre, Akkuratova 2, 197341 St. Petersburg, Russia
| | | | - Elena S. Knyazeva
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St Petersburg, Russia
| | - Elena V. Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St Petersburg, Russia
| | - Yuliya A. Nashchekina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 St. Petersburg, Russia
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
14
|
Hyaluronic Acid in Biomedical Fields: New Trends from Chemistry to Biomaterial Applications. Int J Mol Sci 2022; 23:ijms232214372. [PMID: 36430855 PMCID: PMC9695447 DOI: 10.3390/ijms232214372] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this review is to give an updated perspective about the methods for chemical modifications of hyaluronic acid (HA) toward the development of new applications in medical devices and material engineering. After a brief introduction on chemical, structural and biological features of this important natural polysaccharide, the most important methods for chemical and physical modifications are disclosed, discussing both on the formation of new covalent bonds and the interaction with other natural polysaccharides. These strategies are of paramount importance in the production of new medical devices and materials with improved properties. In particular, the use of HA in the development of new materials by means of additive manufacturing techniques as electro fluid dynamics, i.e., electrospinning for micro to nanofibres, and three-dimensional bioprinting is also discussed.
Collapse
|
15
|
Polymyxin B in Combination with Glycerol Monolaurate Exerts Synergistic Killing against Gram-Negative Pathogens. Pathogens 2022; 11:pathogens11080874. [PMID: 36014995 PMCID: PMC9413120 DOI: 10.3390/pathogens11080874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
The rapid emergence and spread of multidrug-resistant (MDR) bacterial pathogens pose a serious danger to worldwide human health, and resistance to last-resort drugs, such as polymyxins, is being increasingly detected in MDR Gram-negative pathogens. There is an urgent need to find and optimize combination therapies as an alternative therapeutic strategy, with a dry pipeline in novel antibiotic research and development. We found a monoester formed from the combination of lauric acid and glycerol, glycerol monolaurate (GML), possessing prominent antibacterial and anti-inflammatory activity. However, it is still unclear whether GML in combination could increase antimicrobial activity. Here, we reported that polymyxin B (PMNB) combined with GML exhibited a synergistic antimicrobial impact on Gram-negative strains in vitro, including clinical MDR isolates. This synergistic antimicrobial activity correlated with the destruction of bacterial cell structures, eradication of preformed biofilms, and increased reactive oxygen species (ROS) accumulation. We also showed that PMNB synergized with GML effectively eliminated pathogens from bacterial pneumonia caused by Klebsiella pneumoniae to rescue mice. Our research demonstrated that the PMNB and GML combination induced synergistic antimicrobial activity for Gram-negative pathogens in vitro and in vivo. These findings are of great importance for treating bacterial infections and managing the spread of infectious diseases.
Collapse
|