1
|
Lan J, Mei S, Du Y, Chi M, Yang J, Guo S, Chu M, He R, Gao J. ApWD40a, a Member of the WD40-Repeat Protein Family, Is Crucial for Fungal Development, Toxin Synthesis, and Pathogenicity in the Ginseng Alternaria Leaf Blight Fungus Alternaria panax. J Fungi (Basel) 2025; 11:59. [PMID: 39852478 PMCID: PMC11767187 DOI: 10.3390/jof11010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
Alternaria panax, the primary pathogen that causes ginseng Alternaria leaf blight disease, can lead to a 20-30% reduction in ginseng yield. WD40 repeat-containing proteins are evolutionarily conserved proteins with diverse functions between different organisms. In this study, we characterized the roles of a WD40 repeat-containing protein in A. panax. The deletion of ApWD40a impaired the mycelial growth, reduced the sporulation, and significantly decreased the efficiency in utilizing various carbon sources. The ΔApwd40a mutant showed increased sensitivity to osmotic stress and metal ion stress induced by sorbitol, NaCl, and KCl, but decreased the sensitivity to a cell wall stress factor (SDS) and oxidative stress factors (paraquat and H2O2). Pathogenicity assays performed on detached ginseng leaves and roots revealed that the disruption of ApWD40a significantly decreased the fungal virulence through attenuating melanin and mycotoxin production by A. panax. A comparative transcriptome analysis revealed that ApWD40a was involved in many metabolic and biosynthetic processes, including amino acid metabolism, carbon metabolism, sulfate metabolic pathways, and secondary metabolite pathways. In particular, a significantly upregulated gene that encoded a sulfate permease 2 protein in ΔApwd40a, named ApSulP2, was deleted in the wild-type strain of A. panax. The deletion of ApSulP2 resulted in reduced biomass under sulfate-free conditions, demonstrating that the sulfate transport was impaired. Taken together, our findings highlight that ApWD40a played crucial roles in different biological processes and the pathogenicity of A. panax through modulating the expressions of genes involved in various primary and secondary metabolic processes.
Collapse
Affiliation(s)
- Jinling Lan
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (J.L.)
| | - Shengjie Mei
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (J.L.)
| | - Yingxue Du
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (J.L.)
| | - Meili Chi
- National Ginseng Products Quality Inspection Testing Center, Yanji 133000, China
| | - Jiayi Yang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (J.L.)
| | - Shuliu Guo
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (J.L.)
| | - Mingliang Chu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (J.L.)
| | - Ronglin He
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (J.L.)
| | - Jie Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (J.L.)
| |
Collapse
|
2
|
Zhu JZ, Li P, Zhang Z, Li XG, Zhong J. The CfKOB1 gene related to cell apoptosis is required for pathogenicity and involved in mycovirus-induced hypovirulence in Colletotrichum fructicola. Int J Biol Macromol 2024; 271:132437. [PMID: 38761910 DOI: 10.1016/j.ijbiomac.2024.132437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Colletotrichum fructicola is a globally significant phytopathogenic fungus. Mycovirus-induced hypovirulence has great potential for biological control and study of fungal pathogenic mechanisms. We previously reported that the mycovirus Colletotrichum alienum partitivirus 1 (CaPV1) is associated with the hypovirulence of C. fructicola, and the present study aimed to further investigate a host factor and its roles in mycovirus-induced hypovirulence. A gene named CfKOB1, which encodes putative protein homologous to the β-subunit of voltage-gated potassium channels and aldo-keto reductase, is downregulated upon CaPV1 infection and significantly upregulated during the early infection phase of Nicotiana benthamiana by C. fructicola. Deleting the CfKOB1 gene resulted in diminished vegetative growth, decreased production of asexual spores, hindered appressorium formation, reduced virulence, and altered tolerance to abiotic stresses. Transcriptome analysis revealed that CfKOB1 regulates many metabolic pathways as well as the cell cycle and apoptosis. Furthermore, enhanced apoptosis was observed in the ΔCfKOB1 mutants. Viral RNA accumulation was significantly increased in the CfKOB1 deletion mutant. Additionally, our findings demonstrated that CaPV1 infection in the WT strain also induced cell apoptosis. Collectively, these results highlight the diverse biological roles of the CfKOB1 gene in the fungus C. fructicola, while it also participates in mycovirus-induced hypovirulence by regulating apoptosis.
Collapse
Affiliation(s)
- Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, Hunan Province 410128, PR China
| | - Ping Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, Hunan Province 410128, PR China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha City, Hunan Province 410125, PR China
| | - Xiao Gang Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, Hunan Province 410128, PR China.
| | - Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, Hunan Province 410128, PR China.
| |
Collapse
|
3
|
Xie T, Wang J, Zhang S, Song J, Zan G, Wu J, Na R, Wu Q, He R. Fabrication of three-dimension hierarchical structure CuO nanoflowers and their antifungal mechanism against Bipolaris sorokiniana. Int J Food Microbiol 2024; 411:110551. [PMID: 38171235 DOI: 10.1016/j.ijfoodmicro.2023.110551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Nanomaterials are widely investigated in sustainable agriculture owing to their unique physicochemical properties, especially Cu-based nanomaterial with eco-friendliness and essential for plant. However, the effect of CuO nanomaterial on Bipolaris sorokiniana (B. sorokiniana) is yet to be systematically understood. In this study, a three-dimension hierarchical structure CuO nanoflower (CuO NF) with ultrathin petals and excellent dispersibility in water was constructed and proved to have outstanding antifungal activity against B. sorokiniana with the inhibition rate of 86 % in mycelial growth, 74 % in mycelial dry weight and 75 % in conidial germination. Furthermore, the antifungal mechanism was assigned to the production of reactive oxygen species in intracellular caused by antioxidant mimicking activity of CuO NF to damage of cell membrane integrity and result cellular leakage. Additionally, the good control effect of CuO NF on wheat diseases caused by B. sorokiniana was demonstrated through pot experiment. This article firstly reveals the antifungal activity and mechanism of CuO NF on B. sorokiniana, and establishes the relationship between enzyme-like activity of CuO NF and its antifungal activity, which provides a promising application of Cu-based nanomaterial as nanofungicide in plant protection and a theoretical foundation for structure design of nanomaterials to improve their antifungal activities.
Collapse
Affiliation(s)
- Tenglong Xie
- College of Plant Protection, NanoAgro Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiaxiang Wang
- College of Plant Protection, NanoAgro Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Shibo Zhang
- College of Plant Protection, NanoAgro Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Jinhui Song
- College of Plant Protection, NanoAgro Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Guangtao Zan
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiakai Wu
- College of Plant Protection, NanoAgro Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Risong Na
- College of Plant Protection, NanoAgro Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Qingnan Wu
- College of Plant Protection, NanoAgro Center, Henan Agricultural University, Zhengzhou 450046, China.
| | - Rui He
- College of Plant Protection, NanoAgro Center, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Zhang W, Yang Q, Yang L, Li H, Zhou W, Meng J, Hu Y, Wang L, Kang R, Li H, Ding S, Li G. High-Quality Nuclear Genome and Mitogenome of Bipolaris sorokiniana LK93, a Devastating Pathogen Causing Wheat Root Rot. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:452-456. [PMID: 36802869 DOI: 10.1094/mpmi-09-22-0196-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bipolaris sorokiniana, one of the most devastating hemibiotrophic fungal pathogens, causes root rot, crown rot, leaf blotching, and black embryos of gramineous crops worldwide, posing a serious threat to global food security. However, the host-pathogen interaction mechanism between B. sorokiniana and wheat remains poorly understood. To facilitate related studies, we sequenced and assembled the genome of B. sorokiniana LK93. Nanopore long reads and next generation sequencing short reads were applied in the genome assembly, and the final 36.4-Mb genome assembly contains 16 contigs with the contig N50 of 2.3 Mb. Subsequently, we annotated 11,811 protein-coding genes. Of these, 10,620 were functional genes, 258 of which were identified as secretory proteins, including 211 predicted effectors. Additionally, the 111,581-bp mitogenome of LK93 was assembled and annotated. The LK93 genomes presented in this study will facilitate research in the B. sorokiniana-wheat pathosystem for better control of crop diseases. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qun Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyang Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Wenqing Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxing Meng
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Yanfeng Hu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Limin Wang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Ruijiao Kang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Honglian Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Shengli Ding
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Huang Z, Lou J, Gao Y, Noman M, Li D, Song F. FonTup1 functions in growth, conidiogenesis and pathogenicity of Fusarium oxysporum f. sp. niveum through modulating the expression of the tricarboxylic acid cycle genes. Microbiol Res 2023; 272:127389. [PMID: 37099956 DOI: 10.1016/j.micres.2023.127389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
The Tup1-Cyc8 complex is a highly conserved transcriptional corepressor that regulates intricate genetic network associated with various biological processes in fungi. Here, we report the role and mechanism of FonTup1 in regulating physiological processes and pathogenicity in watermelon Fusarium wilt fungus, Fusarium oxysporum f. sp. niveum (Fon). FonTup1 deletion impairs mycelial growth, asexual reproduction, and macroconidia morphology, but not macroconidial germination in Fon. The ΔFontup1 mutant exhibits altered tolerance to cell wall perturbing agent (congo red) and osmotic stressors (sorbitol or NaCl), but unchanged sensitivity to paraquat. The deletion of FonTup1 significantly decreases the pathogenicity of Fon toward watermelon plants through attenuating the ability to colonize and grow within the host. Transcriptome analysis revealed that FonTup1 regulates primary metabolic pathways, including the tricarboxylic acid (TCA) cycle, via altering the expression of corresponding genes. Downregulation of three malate dehydrogenase genes, FonMDH1-3, occurs in ΔFontup1, and disruption of FonMDH2 causes significant abnormalities in mycelial growth, conidiation, and virulence of Fon. These findings demonstrate that FonTup1, as a global transcriptional corepressor, plays crucial roles in different biological processes and pathogenicity of Fon through regulating various primary metabolic processes, including the TCA cycle. This study highlights the importance and molecular mechanism of the Tup1-Cyc8 complex in multiple basic biological processes and pathogenicity of phytopathogenic fungi.
Collapse
Affiliation(s)
- Ziling Huang
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiajun Lou
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Gao
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Noman
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dayong Li
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Fengming Song
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|