1
|
Ergin AD, Bayindir ZS, Gumustas M, Ozcelikay AT, Yuksel N. A new strategy for enhancing S-Adenosyl-L-Methionine (SAMe) oral bioavailability: Preparation of SAMe loaded inulin nanoparticles for colon targeting with in vivo validation. Int J Biol Macromol 2025; 289:138818. [PMID: 39694359 DOI: 10.1016/j.ijbiomac.2024.138818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
S-Adenosylmethionine (SAMe) is a crucial endogenous molecule in vital biochemical processes such as DNA, RNA, and protein methylation. It has been found beneficial in the treatment of liver disease, osteoarthritis, and particularly depression. However, SAMe's therapeutic potential is limited by low bioavailability due to poor permeability and extensive liver metabolism. This study sought to improve SAMe's bioavailability by encapsulating it in inulin nanoparticles, utilizing a colon-targeted delivery system. Inulin, a prebiotic that promotes gut health by encouraging beneficial gut bacteria, is an ideal carrier for colon-specific drug delivery. Inulin nanoparticles were prepared using the desolvation method, incorporating sodium lauryl sulfate (SLS) for ion pairing with SAMe. The nanoparticles were spray-coated onto microcrystalline cellulose inert microspheres in a fluidized bed with Eudragit L30D-55 for colon-targeted release (Nanoparticle-In-Microparticles, NIMs). Pharmacokinetic studies in rats showed that encapsulating SAMe in inulin nanoparticles resulted in a significant three-fold increase in bioavailability compared to its pure form. This enhancement highlights the potential of inulin nanoparticles as an effective delivery system for SAMe, particularly in colon-targeted therapies.
Collapse
Affiliation(s)
- Ahmet Dogan Ergin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne, Turkey.
| | - Zerrin Sezgin Bayindir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Mehmet Gumustas
- Ankara University, Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara, Turkey
| | - Arif Tanju Ozcelikay
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Nilufer Yuksel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| |
Collapse
|
2
|
Río IMD, González-Andrade M, Portillo FVL, Olvera-Carranza C. Exploring the role of the residues into catalytic cavity of inulosucrase from Leuconostoc citreum CW28. Int J Biol Macromol 2024; 279:135159. [PMID: 39214229 DOI: 10.1016/j.ijbiomac.2024.135159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Inulosucrases are enzymes capable of synthesizing inulin polymers using sucrose as the main substrate. The enzymatic activity relies on the catalytic triad within the active site and residues responsible for substrate recognition and orientation, termed carbohydrate-binding subsites. This study investigates the role of specific residues within the catalytic cavity of a truncated version of IslA4 in enzymatic catalysis. Mutants at residues S425, L499, A602, R618, F619, Y676, Y692, and R696 were constructed and characterized. Characterization results, and in silico structural comparison with other fructansucrases, reveal these residues' functional significance in catalysis. Residue S425 belongs to subsite -1; residues R618 and Y692 are part of subsite +1, and residue R696 belongs to subsites +1 and +2. Residues L499 and A602 are support residues; the former favors the formation of the fructosyl-enzyme intermediate, while the latter stabilizes the acid/base catalyst during catalysis. Residues Y676 and F619 may participate in stabilizing residues at -1/+1 subsites. This study represents the first comprehensive exploration of the structural determinants essential for enzymatic function in the inulosucrase of Leuconostoc citreum, and proposes the identity of residues involved in the -1 to +2 subsites.
Collapse
Affiliation(s)
- Ingrid Mercado-Del Río
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad #3000, 04510, Mexico
| | - Francisco Vera-López Portillo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Clarita Olvera-Carranza
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
3
|
Gong T, Liu X, Wang X, Lu Y, Wang X. Applications of polysaccharides in enzyme-triggered oral colon-specific drug delivery systems: A review. Int J Biol Macromol 2024; 275:133623. [PMID: 38969037 DOI: 10.1016/j.ijbiomac.2024.133623] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.
Collapse
Affiliation(s)
- Tingting Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xinxin Liu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xi Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yunqian Lu
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
4
|
Shen J, Jiao W, Yuan B, Xie H, Chen Z, Wei M, Sun Y, Wu Y, Zhang F, Li Z, Jin X, Du L, Jin Y. Oral Curcumin-Thioketal-Inulin Conjugate Micelles against Radiation-Induced Enteritis. Antioxidants (Basel) 2024; 13:417. [PMID: 38671865 PMCID: PMC11047665 DOI: 10.3390/antiox13040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Radiation-induced enteritis is an unavoidable complication associated with pelvic tumor radiotherapy, significantly influencing the prognosis of cancer patients. The limited availability of commercial gastrointestinal radioprotectors in clinical settings poses a substantial challenge in preventing radiation enteritis. Despite the inherent radioprotective characteristics of Cur in vitro, its poor solubility in water, instability, and low bioavailability lead to inferior therapeutic effects in vivo. Herein, we developed novel ROS-responsive micelles (CTI) from inulin and curcumin, aimed at mitigating radiation enteritis. CTI micelles had excellent solubility and stability. Importantly, CTI improved the cytotoxicity and bioavailability of curcumin, thereby showing enhanced effectiveness in neutralizing ROS induced by radiation, safeguarding against DNA damage, and reducing radiation-induced cellular mortality. Moreover, in a radiation enteritis mice model, CTI not only alleviated severe radiation-induced intestinal injury but also improved redox-related indicators and reduced inflammatory cytokine expression. Furthermore, CTI effectively increased gut microbiota abundance and maintained gut homeostasis. In conclusion, CTI could be a promising candidate for the clinical management of radiation enteritis. Our study provides a new perspective for radioprotection using natural antioxidants.
Collapse
Affiliation(s)
- Jintao Shen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wencheng Jiao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bochuan Yuan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Xie
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ziyuan Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Meng Wei
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yingbao Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yanping Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Feng Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhangyu Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xu Jin
- Department of Anesthesiology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing 100191, China
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lina Du
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
5
|
Li L, Wang Z, Guo H, Lin Q. Nanomaterials: a promising multimodal theranostics platform for thyroid cancer. J Mater Chem B 2023; 11:7544-7566. [PMID: 37439780 DOI: 10.1039/d3tb01175e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Thyroid cancer is the most prevalent malignant neoplasm of the cervical region and endocrine system, characterized by a discernible upward trend in incidence over recent years. Ultrasound-guided fine needle aspiration is the current standard for preoperative diagnosis of thyroid cancer, albeit with limitations and a certain degree of false-negative outcomes. Although differentiated thyroid carcinoma generally exhibits a favorable prognosis, dedifferentiation is associated with an unfavorable clinical course. Anaplastic thyroid cancer, characterized by high malignancy and aggressiveness, remains an unmet clinical need with no effective treatments available. The emergence of nanomedicine has opened new avenues for cancer theranostics. The unique features of nanomaterials, including multifunctionality, modifiability, and various detection modes, enable non-invasive and convenient thyroid cancer diagnosis through multimodal imaging. For thyroid cancer treatment, nanomaterial-based photothermal therapy or photodynamic therapy, combined with chemotherapy, radiotherapy, or gene therapy, holds promise in reducing invasiveness and prolonging patient survival or alleviating pain in individuals with anaplastic thyroid carcinoma. Furthermore, nanomaterials enable simultaneous diagnosis and treatment of thyroid cancer. This review aims to provide a comprehensive survey of the latest developments in nanomaterials for thyroid cancer diagnosis and treatment and encourage further research in developing innovative and effective theranostic approaches for thyroid cancer.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China.
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Hui Guo
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
6
|
Han L, Zhai R, Hu B, Yang J, Li Y, Xu Z, Meng Y, Li T. Effects of Octenyl-Succinylated Chitosan-Whey Protein Isolated on Emulsion Properties, Astaxanthin Solubility, Stability, and Bioaccessibility. Foods 2023; 12:2898. [PMID: 37569167 PMCID: PMC10418324 DOI: 10.3390/foods12152898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The synthesis of octenyl-succinylated chitosan with different degrees of substitution resulting from chemical modification of chitosan and controlled addition of octenyl succinic acid was investigated. The modified products were characterized using 1H NMR, FTIR, and XRD, and the degree of substitution was also determined. The properties of the modified chitosan oligosaccharide in solution were evaluated by surface tension and dye solubilization, finding that the molecules self-assembled when they are above the critical aggregation concentration. The two methods yielded consistent results, showing that the self-assembly was reduced with higher levels of substitution. The antimicrobial activity of the octanyl-succinylated chitosan oligosaccharide (OSA-COS) derivatives against Staphylococcus aureus, Escherichia coli, and Fusarium oxysporum f.sp cucumerinum was investigated by the Oxford cup method. While the acetylated COS derivatives were not significantly effective against either E coli or S. aureus, they showed significant antifungal activity toward F. oxysporum that was superior to that of COS. The modified product was found to form a stable emulsion when mixed with whey protein isolate. The emulsion formed by the highly substituted derivatives have a certain stability and loading efficiency, which can be used for the encapsulation and delivery of astaxanthin.
Collapse
Affiliation(s)
- Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Ruiyi Zhai
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW, UK;
| | - Yaoyao Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Zhe Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Yueyue Meng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China; (L.H.); (B.H.); (Y.L.); (Z.X.); (Y.M.)
| |
Collapse
|