1
|
Niu D, Zhao Q, Xu L, Lin K. Physiological and Molecular Mechanisms of Lepidopteran Insects: Genomic Insights and Applications of Genome Editing for Future Research. Int J Mol Sci 2024; 25:12360. [PMID: 39596426 PMCID: PMC11594828 DOI: 10.3390/ijms252212360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Lepidopteran insects are a major threat to global agriculture, causing significant crop losses and economic damage. Traditional pest control methods are becoming less effective due to the rapid evolution of insecticide resistance. This study explores the current status and genomic characteristics of 1315 Lepidopteran records, alongside an overview of relevant research, utilizing advanced functional genomics techniques, including RNA-seq and CRISPR/Cas9 gene-editing technologies to uncover the molecular mechanisms underlying insecticide resistance. Our genomic analysis revealed significant variability in genome size, assembly quality, and chromosome number, which may influence species' biology and resistance mechanisms. We identified key resistance-associated genes and pathways, including detoxification and metabolic pathways, which help these insects evade chemical control. By employing CRISPR/Cas9 gene-editing techniques, we directly manipulated resistance-associated genes to confirm their roles in resistance, demonstrating their potential for targeted interventions in pest management. These findings emphasize the value of integrating genomic data into the development of effective and sustainable pest control strategies, reducing reliance on chemical insecticides and promoting environmentally friendly integrated pest management (IPM) approaches. Our study highlights the critical role of functional genomics in IPM and its potential to provide long-term solutions to the growing challenge of Lepidopteran resistance.
Collapse
Affiliation(s)
- Dongsheng Niu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Qing Zhao
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| |
Collapse
|
2
|
Zhang H, Liang X, Li D, Zhang C, Wang W, Tang R, Zhang H, Kiflu AB, Liu C, Liang J, Li X, Luo TR. Apolipoprotein D facilitates rabies virus propagation by interacting with G protein and upregulating cholesterol. Front Immunol 2024; 15:1392804. [PMID: 38868762 PMCID: PMC11167634 DOI: 10.3389/fimmu.2024.1392804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
Rabies virus (RABV) causes a fatal neurological disease, consisting of unsegmented negative-strand RNA, which encodes five structural proteins (3'-N-P-M-G-L-5'). Apolipoprotein D (ApoD), a lipocalin, is upregulated in the nervous system after injury or pathological changes. Few studies have focused on the role of ApoD during virus infection so far. This study demonstrated that ApoD is upregulated in the mouse brain (in vivo) and C8-D1A cells (in vitro) after RABV infection. By upregulating ApoD expression in C8-D1A cells, we found that ApoD facilitated RABV replication. Additionally, Co-immunoprecipitation demonstrated that ApoD interacted with RABV glycoprotein (G protein). The interaction could promote RABV replication by upregulating the cholesterol level. These findings revealed a novel role of ApoD in promoting RABV replication and provided a potential therapeutic target for rabies.
Collapse
Affiliation(s)
- Hongyan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Xingxue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Duoduo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Chuanliang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Wenfeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Rongze Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Hongyun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Abraha Bahlbi Kiflu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Cheng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| | - Jingjing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| | - Xiaoning Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| | - Ting Rong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Lu JB, Ren PP, Li Q, He F, Xu ZT, Wang SN, Chen JP, Li JM, Zhang CX. The evolution and functional divergence of 10 Apolipoprotein D-like genes in Nilaparvata lugens. INSECT SCIENCE 2024; 31:91-105. [PMID: 37334667 DOI: 10.1111/1744-7917.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/16/2023] [Accepted: 04/22/2023] [Indexed: 06/20/2023]
Abstract
Apolipoprotein D (ApoD), a member of the lipocalin superfamily of proteins, is involved in lipid transport and stress resistance. Whereas only a single copy of the ApoD gene is found in humans and some other vertebrates, there are typically several ApoD-like genes in insects. To date, there have been relatively few studies that have examined the evolution and functional differentiation of ApoD-like genes in insects, particularly hemi-metabolous insects. In this study, we identified 10 ApoD-like genes (NlApoD1-10) with distinct spatiotemporal expression patterns in Nilaparvata lugens (BPH), which is an important pest of rice. NlApoD1-10 were found to be distributed on 3 chromosomes in a tandem array of NlApoD1/2, NlApoD3-5, and NlApoD7/8, and show sequence and gene structural divergence in the coding regions, indicating that multiple gene duplication events occurred during evolution. Phylogenetic analysis revealed that NlApoD1-10 can be clustered into 5 clades, with NlApoD3-5 and NlApoD7/8 potentially evolving exclusively in the Delphacidae family. Functional screening using an RNA interference approach revealed that only NlApoD2 was essential for BPH development and survival, whereas NlApoD4/5 are highly expressed in testes, and might play roles in reproduction. Moreover, stress response analysis revealed that NlApoD3-5/9, NlApoD3-5, and NlApoD9 were up-regulated after treatment with lipopolysaccharide, H2 O2 , and ultraviolet-C, respectively, indicating their potential roles in stress resistance.
Collapse
Affiliation(s)
- Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Peng-Peng Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Qiao Li
- Technology Center of Wuhan Customs District, Hubei, China
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Fang He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Zhong-Tian Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Sai-Nan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Zhang ZL, Wang XJ, Lu HB, Huang HJ. Comparative Transcriptomic Analysis Reveals Adaptation Mechanisms of Bean Bug Riptortus pedestris to Different Food Resources. INSECTS 2023; 14:739. [PMID: 37754707 PMCID: PMC10531862 DOI: 10.3390/insects14090739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
The bean bug, Riptortus pedestris (Hemiptera: Heteroptera), poses a significant threat to soybean production, resulting in substantial crop losses. Throughout the soybean cultivation period, these insects probe and suck on various parts of plants, including leaves, pods, and beans. However, the specific mechanisms by which they adapt to different food resources remain unknown. In this study, we conducted gut transcriptomic analyses of R. pedestris fed with soybean leaves, pods, and beans. A total of 798, 690, and 548 differently expressed genes (DEGs) were monitored in G-pod vs. G-leaf (comparison of insect feeding on pods and leaves), G-bean vs. G-leaf (comparison of insect feeding on beans and leaves), and G-pod vs. G-bean (comparison of insect feeding on pods and beans), respectively. When fed on pods and beans, there was a significant increase in the expression of digestive enzymes, particularly cathepsins, serine proteases, and lipases. Conversely, when soybean leaves were consumed, detoxification enzymes, such as ABC transporters and 4-coumarate-CoA ligase, exhibited higher expression. Our findings indicate that R. pedestris dynamically regulates different metabolic pathways to cope with varying food resources, which may contribute to the development of effective strategies for managing this pest.
Collapse
Affiliation(s)
| | | | | | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.-L.Z.); (X.-J.W.); (H.-B.L.)
| |
Collapse
|
5
|
Ren F, Yan J, Wang X, Xie Y, Guo N, Swevers L, Sun J. Peptidoglycan Recognition Protein S5 of Bombyx mori Facilitates the Proliferation of Bombyx mori Cypovirus 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6338-6347. [PMID: 37053003 DOI: 10.1021/acs.jafc.3c00927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bombyx mori cypovirus 1 (BmCPV1), a primary pathogen of the silkworm, is a typical dsRNA virus belonging to the Reoviridae family. In this study, a total of 2520 differentially expressed genes (DEGs) were identified by RNA-seq analysis of the silkworm midgut after BmCPV1 infection and Gene Ontology (GO) functional annotation showed that the DEGs predominantly functioned in binding (molecular function), cell (cellular component), and cellular processes (biological process). Additionally, the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation revealed that the DEGs were mainly distributed in global and overview metabolism maps, translation, and signal transduction. Among the identified DEGs, BmPGRP-S5 belongs to the peptidoglycan recognition protein (PGRP) family. Previous studies have revealed that PGRPs were involved in the interactions between silkworm and BmCPV1. Here, we explored the effect of BmPGRP-S5 on BmCPV1 replication and demonstrated that BmPGRP-S5 promotes the proliferation of BmCPV1 in BmN cells through overexpression or knockdown experiments. Knocking down of BmPGRP-S5 in silkworm larvae similarly promoted the proliferation of BmCPV1. Through experimental validation, we therefore determined that BmPGRP-S5 acts as a proviral host factor for BmCPV1 infection. This study clarifies the proliferation mechanism of BmCPV1 and provides new insights into the functional role of BmPGRP-S5.
Collapse
Affiliation(s)
- Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiming Yan
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiong Wang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yukai Xie
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Nan Guo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Aghia Paraskevi, Athens 15341, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|