1
|
Li HF, Dong B, Peng YY, Luo HY, Ou XL, Ren ZL, Park Y, Wang JJ, Jiang HB. The neuropeptide sulfakinin is a peripheral regulator of insect behavioral switch between mating and foraging. eLife 2025; 13:RP100870. [PMID: 40314230 PMCID: PMC12048153 DOI: 10.7554/elife.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
Abstract
Behavioral strategies for foraging and reproduction in the oriental fruit fly (Bactrocera dorsalis) are alternative options for resource allocation and are controlled by neuropeptides. Here, we show that the behavioral switch between foraging and reproduction is associated with changes in antennal sensitivity. Starved flies became more sensitive to food odors while suppressing their response to opposite-sex pheromones. The gene encoding sulfakinin receptor 1 (SkR1) was significantly upregulated in the antennae of starved flies, so we tested the behavioral phenotypes of null mutants for the genes encoding the receptor (skr1-/-) and its ligand sulfakinin (sk-/-). In both knockout lines, the antennal responses shifted to mating mode even when flies were starved. This suggests that sulfakinin signaling via SkR1 promotes foraging while suppressing mating. Further analysis of the mutant flies revealed that sets of odorant receptor (OR) genes were differentially expressed. Functional characterization of the differentially expressed ORs suggested that sulfakinin directly suppresses the expression of ORs that respond to opposite-sex hormones while enhancing the expression of ORs that detect food volatiles. We conclude that sulfakinin signaling via SkR1, modulating OR expressions and leading to altered antenna sensitivities, is an important component in starvation-dependent behavioral change.
Collapse
Affiliation(s)
- Hong-Fei Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Bao Dong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Yuan-Yuan Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Hao-Yue Luo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Xiao-Lan Ou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Zheng-Lin Ren
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Yoonseong Park
- Department of Entomology, Kansas State UniversityManhattan KSUnited States
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest UniversityChongqingChina
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest UniversityChongqingChina
| |
Collapse
|
2
|
Li F, Wang X, Zhou X. The Genomics Revolution Drives a New Era in Entomology. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:379-400. [PMID: 39874145 DOI: 10.1146/annurev-ento-013024-013420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Thanks to the fast development of sequencing techniques and bioinformatics tools, sequencing the genome of an insect species for specific research purposes has become an increasingly popular practice. Insect genomes not only provide sets of gene sequences but also represent a change in focus from reductionism to systemic biology in the field of entomology. Using insect genomes, researchers are able to identify and study the functions of all members of a gene family, pathway, or gene network associated with a trait of interest. Comparative genomics studies provide new insights into insect evolution, addressing long-lasting controversies in taxonomy. It is also now feasible to uncover the genetic basis of important traits by identifying variants using genome resequencing data of individual insects, followed by genome-wide association analysis. Here, we review the current progress in insect genome sequencing projects and the application of insect genomes in uncovering the phylogenetic relationships between insects and unraveling the mechanisms of important life-history traits. We also summarize the challenges in genome data sharing and possible solutions. Finally, we provide guidance for fully and deeply mining insect genome data.
Collapse
Affiliation(s)
- Fei Li
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China;
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| | - Xin Zhou
- Department of Entomology, China Agricultural University, Beijing, China;
| |
Collapse
|
3
|
Dacre DC, Duncan FD, Weldon CW. The effects of diet and semiochemical exposure on male Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) metabolic rate at a range of temperatures. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104718. [PMID: 39461585 DOI: 10.1016/j.jinsphys.2024.104718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is an invasive species that has rapidly spread across the African continent, endangering the security of agricultural industries. The sterile insect technique (SIT) is being investigated as a viable additional pest management tool to suppress B. dorsalis populations after its successful implementation in other parts of the world. There is evidence to suggest that pre-release nutritional and semiochemical treatments for sterilised males can enhance their competitive performance against wild type males in SIT programs. This study examined how sterilisation, a diet rich in protein (addition of yeast hydrolysate) or containing semiochemicals (methyl eugenol or eugenol) affected the resting metabolic (RMR) of male B. dorsalis at different temperatures (15 - 30 °C), measured using flow-through respirometry. Our results indicated that the negative effect of sterilisation on RMR decreased as temperature increased and that duration of exposure to semiochemicals for 1 to 4 days was not a significant influencing factor on male B. dorsalis RMR. Protein-rich diet increased average RMR, but the difference in RMR between dietary groups decreased as temperature increased. Semiochemical feeding reduced the average RMR in male B. dorsalis. The difference in RMR between males that consumed semiochemical and those that did not increased with as temperature increased.
Collapse
Affiliation(s)
- Dylan C Dacre
- Department of Zoology & Entomology, University of Pretoria, Hatfield 0028, Pretoria, South Africa
| | - Frances D Duncan
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Wits 2050, Johannesburg, South Africa
| | - Christopher W Weldon
- Department of Zoology & Entomology, University of Pretoria, Hatfield 0028, Pretoria, South Africa.
| |
Collapse
|
4
|
Xie C, Zeng B, Du X, Yan S, Shen J, Zhang J. Detoxification of Chlorfenapyr by a Parkin-GSTd2 Module in Bactrocera dorsalis (Diptera: Tephritidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25490-25499. [PMID: 39509650 DOI: 10.1021/acs.jafc.4c06416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a highly invasive and destructive pest. Chlorfenapyr is a widely used insecticide that disrupts mitochondrial activity. The Parkin protein plays conserved roles in maintaining mitochondrial homeostasis, but the role of Parkin in response to chlorfenapyr remains largely unknown. Here, we report that BdParkin is required for chlorfenapyr detoxification, and dsRNA targeting BdParkin improves the insecticidal efficacy of chlorfenapyr. Among the genes whose expression levels are affected by BdParkin RNAi, knock-down of the glutathione S-transferase gene BdGSTd2 increases the insecticidal efficacy of chlorfenapyr. Molecular docking reveals potential interactions between BdGSTd2 and tralopyril, an insecticidal metabolite of chlorfenapyr. These results suggest that BdParkin could impact the response of B. dorsalis to chlorfenapyr through metabolic processes regulated by BdGSTd2. Our findings could offer new insights into how insects detoxify chlorfenapyr and provide molecular targets for developing a sustainable management strategy for B. dorsalis.
Collapse
Affiliation(s)
- Chao Xie
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Biao Zeng
- Science and Technology Achievement Transformation Management Office, Yunnan Academy of Agricultural Sciences, Kunming 650224, China
| | - Xiangge Du
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuo Yan
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jie Shen
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Junzheng Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Chen Z, Ren L, Li J, Fu N, Yun Q, Luo Y. Chromosomal-level genome assembly of Hylurgus ligniperda: insights into host adaptation and environmental tolerance. BMC Genomics 2024; 25:792. [PMID: 39164658 PMCID: PMC11337627 DOI: 10.1186/s12864-024-10711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Hylurgus ligniperda (Coleoptera: Curculionidae) is a worldwide forest quarantine pest. It is widely distributed, has many host tree species, and possesses strong adaptability. To explore its environmental adaptability and the related molecular mechanisms, we conducted chromosome-level genome sequencing and analyzed the transcriptome under different environmental factors, identifying key expressed genes. RESULTS We employed PacBio, Illumina, and Hi-C sequencing techniques to assemble a 520 Mb chromosomal-level genome of H. ligniperda, obtaining an N50 of 39.97 Mb across 138 scaffolds. A total of 10,765 protein-coding genes were annotated after repeat masking. Fourteen chromosomes were identified, among which Hyli14 was determined to be the sex chromosome. Survival statistics were tested over various growth periods under high temperature and low humidity conditions. The maximum survival period of adults reached 292 days at 25 °C, 65% relative humidity. In comparison, the maximum survival period was 14 days under 35 °C, 65% relative humidity, and 106 days under 25°C, 40% relative humidity. This indicated that environmental stress conditions significantly reduced adults' survival period. We further conducted transcriptome analysis to screen for potentially influential differentially expressed genes, such as CYP450 and Histone. Subsequently, we performed gene family analysis to gain insights into their functions and interactions, such as CYP450 and Histone. CYP450 genes affected the detoxification metabolism of enzymes in the Cytochrome P450 pathway to adapt to different environments. Histone genes are involved in insect hormone biosynthesis and longevity-regulating pathways in H. ligniperda to adapt to environmental stress. CONCLUSIONS The genome at the chromosome level of H. ligniperda was assembled for the first time. The mortality of H. ligniperda increased significantly at 35 ℃, 65% RH, and 25 ℃, 40% RH. CYP450 and Histone genes played an important role in response to environmental stress. This genome offers a substantial genetic resource for investigating the molecular mechanisms behind beetle invasion and spread.
Collapse
Affiliation(s)
- Zhiqian Chen
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| | - Jiaxing Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
| | - Ningning Fu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China
- Department of Forest Protection, College of Forestry, Hebei Agricultural University, Baoding, 071033, China
| | | | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Zhang L, Zhang K, Yang F, Dayananda B, Cao Y, Hu Z, Liu Y. Chromosome-level genome of Scolopendra mutilans provides insights into its evolution. Integr Zool 2024. [PMID: 39075924 DOI: 10.1111/1749-4877.12871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Report the first chromosome level genome of myriapod Scolopendra mutilans. Reveal gene expansions for importance to adapt. Annotate nine Hox cluster genes in this genome.
Collapse
Affiliation(s)
- Lin Zhang
- Hubei Shizhen Laboratory, Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Kai Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Buddhi Dayananda
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Yunpeng Cao
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
7
|
Wang Y, Zhao Y, Zhang J, Li Z. Heat Shock Protein Genes Affect the Rapid Cold Hardening Ability of Two Invasive Tephritids. INSECTS 2024; 15:90. [PMID: 38392510 PMCID: PMC10889258 DOI: 10.3390/insects15020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Bactrocera dorsalis and Bactrocera correcta are two invasive species that can cause major economic damage to orchards and the fruit import and export industries. Their distribution is advancing northward due to climate change, which is threatening greater impacts on fruit production. This study tested the rapid cold-hardening ability of the two species and identified the temperature associated with the highest survival rate. Transcriptome data and survival data from the two Bactrocera species' larvae were obtained after rapid cold-hardening experiments. Based on the sequencing of transcripts, four Hsp genes were found to be affected: Hsp68 and Hsp70, which play more important roles in the rapid cold hardening of B. dorsalis, and Hsp23 and Hsp70, which play more important roles in the rapid cold hardening of B. correcta. This study explored the adaptability of the two species to cold, demonstrated the expression and function of four Hsps in response to rapid cold hardening, and explained the occurrence and expansion of these two species of tephritids, offering information for further studies.
Collapse
Affiliation(s)
- Yuning Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yan Zhao
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Junzheng Zhang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
8
|
Wang L, He W, Lu JM, Sun J, Jiang SD, Wang JJ, Wei DD. Characterization and transcriptional expression of ABCG genes in Bactrocera dorsalis: Insights into their roles in fecundity and insecticidal stress response. Int J Biol Macromol 2023; 253:126836. [PMID: 37714235 DOI: 10.1016/j.ijbiomac.2023.126836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
The ATP-binding cassette (ABC) transporters are essential for regulating various physiological processes and insecticide resistance across different living organisms. ABCG subfamily genes have diverse functions in insects, but little is known about the function of ABCGs in a serious agricultural pest, Bactrocera dorsalis. In this study, 15 BdABCG genes were identified, and BdABCG6 and BdABCG11 were highly expressed in the pupal and adult stages, especially during the transition period from pupae to adults. Silencing of these two genes resulted in a significant reduction of egg production in B. dorsalis, confirming their importance in reproduction. Analysis of tissue expression patterns showed that most genes, including BdABCG1, 3, 8, and 14, exhibited tissue-specificity, with significantly higher expression levels observed in the intestine, Malpighian tubule, and fat body compared to other tissues. Meanwhile, the induction of malathion and avermectin can significantly upregulate the expression of the above four genes. Furthermore, knockdown of BdABCG3 by RNAi significantly increased the mortality of B. dorsalis upon exposure to avermectin, which suggested that BdABCG3 is involved in the transport or metabolism of avermectin in B. dorsalis. Overall, our work provides valuable insights into the function of BdABCGs involved in the reproduction and detoxification system of B. dorsalis.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Wang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jin-Ming Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jun Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Shi-Die Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
9
|
Wang L, Tian SH, Zhao W, Wang JJ, Wei DD. Overexpression of ABCB transporter genes confer multiple insecticide tolerances in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105690. [PMID: 38072545 DOI: 10.1016/j.pestbp.2023.105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Bactrocera dorsalis is a notable invasive pest that has developed resistance to several commonly used insecticides in the field, such as avermectin, beta-cypermethrin and malathion. Investigating the mechanisms of insecticide resistance in this pest is of paramount importance for ensuring its effective control. The ATP-binding cassette transporter subfamily B (ABCB) genes, responsible for encoding transmembrane efflux transporters, represent a potential source of insecticide detoxification activity or transportation that remains largely unexplored in B. dorsalis. In this study, seven BdABCB genes were identified and comprehensive analyzed based on the latest genome and transcriptome dataset. Subsequently, we characterized the expression profiles of these genes across different development stages and tissues, as well as under different insecticide exposures. The results showed that the BdABCB genes were expressed at all stages in B. dorsalis, with BdABCB2 and BdABCB7 being highly expressed in the pupal stage, while BdABCB5 and BdABCB6 were highly expressed in the larval stage. Besides, the BdABCBs were highly expressed in the detoxification metabolic tissues. Among them, BdABCB5 and BdABCB6 were significantly overexpressed in the midgut and Malpighian tubules, respectively. Furthermore, with the exception of BdABCB6, the expression levels of the other six BdABCBs were significantly up-regulated following induction with avermectin, beta-cypermethrin and malathion. Six BdABCBs (BdABCB1-5 and BdABCB7) were knocked down by RNA interference, and the interference efficiencies were 46.58%, 39.50%, 45.60%, 33.74%, 66.37% and 63.83%, respectively. After injecting dsBdABCBs, the mortality of flies increased by 25.23% to 39.67% compared to the control upon exposure to the three insecticides. These results suggested that BdABCBs play crucial roles in the detoxification or tolerance of B. dorsalis to multiple insecticides.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Shu-Hang Tian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wei Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
10
|
Li Z, Chen M, Bai W, Zhang S, Meng L, Dou W, Wang J, Yuan G. Identification, expression profiles and involvement in insecticides tolerance and detoxification of carboxylesterase genes in Bactrocera dorsalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105443. [PMID: 37248012 DOI: 10.1016/j.pestbp.2023.105443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023]
Abstract
Carboxylesterases (CarEs) are a multifunctional superfamily of enzymes and play an important role in detoxification of various insecticides in insects. The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive agricultural pests and has developed different degrees of resistance to organophosphates in field. However, the involvement of BdCarEs in tolerance or resistance to other alternative insecticides are still unclear. In the present study, 33 BdCarEs genes were identified based on the genome database of B. dorsalis. Phylogenetic analysis demonstrated that they were classified into nine clades, with abundance of α-esterases. Meanwhile, the sequence characterization and the chromosome distribution were also analyzed. The spatiotemporal expression analysis of BdCarEs genes suggested that the diversity of potential function in different physiological processes. With the exception of BdCarE21, all BdCarEs genes responded to at least one insecticide exposure, and BdCarE20 was found to be up-regulated after exposure to all five tested insecticides individually. Eight BdCarEs genes were overexpressed in MR strain when compared to that in SS strain. Subsequently, knockdown the expression of representative BdCarEs genes significantly increased the susceptibility of the oriental fruit fly to corresponding insecticides, which indicated that the tested BdCarEs genes contributed to one or multiple insecticide detoxification. These findings provide valuable insights into the potential role in respond to tolerance or resistance to insecticides with different mode of action, and will facilitate development of efficiency management strategy for B. dorsalis.
Collapse
Affiliation(s)
- Zhenyu Li
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Mengling Chen
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Wenjie Bai
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Shuxia Zhang
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Liwei Meng
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Guorui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
| |
Collapse
|