1
|
Meng L, Ma Y, Zou Y, Zhang B, Chen G, Dong C, Wang L, Guan H. Lightweight, breathable and self-cleaning polypyrrole-modified multifunctional cotton fabric for flexible electromagnetic interference shielding. Int J Biol Macromol 2024; 274:133347. [PMID: 38917920 DOI: 10.1016/j.ijbiomac.2024.133347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The thriving of wearable electronics and the emerging new requirements for electromagnetic interference (EMI) shielding have driven the innovation of EMI shielding materials towards lightweight, wearability and multifunctionality. Herein, the hierarchical polypyrrole nanotubes (PNTs)/PDMS structures are rationally constructed on the textile for obtaining multifunctional and flexible EMI shielding textiles by in-situ polymerization and surface coating. The modified cotton fabric possesses a conductivity of about 2715.8 S/m and an SET of 28.2 dB in the X band when the thickness is only 0.5 mm. After ultrasonic treatment, cyclic bending and washing, the conductivity and EMI shielding performance remain stable and exhibit long-term durability. Importantly, the textile's inherent lightweight, breathable and soft properties have been completely retained after modification. This work shows application potentiality in the field of EMI pollution protection and affords a novel path for the construction of multifunctionally wearable and durable EMI shielding materials.
Collapse
Affiliation(s)
- Lingsai Meng
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Yu Ma
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Yupeng Zou
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Bozhao Zhang
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Gang Chen
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Chengjun Dong
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Lihong Wang
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Hongtao Guan
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China.
| |
Collapse
|
2
|
Chai H, Luo J, Li J, Zhong Y, Zhang L, Feng X, Xu H, Mao Z. Lightweight and robust cellulose/MXene/polyurethane composite aerogels as personal protective wearable devices for electromagnetic interference shielding. Int J Biol Macromol 2024; 271:132435. [PMID: 38759856 DOI: 10.1016/j.ijbiomac.2024.132435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The increasing electromagnetic pollution is urgently needed as an electromagnetic interference shielding protection device for wearable devices. Two-dimensional transition metal carbides and nitrides (MXene), due to their interesting layered structure and high electrical conductivity, are ideal candidates for constructing efficient conductive networks in electromagnetic interference shielding materials. In this work, lightweight and robust cellulose/MXene/polyurethane composite aerogels were prepared by mixing cellulose nanofiber (CNF) suspensions with MXene, followed by freeze-drying and coating with polyurethane. In this process, CNF effectively assembled MXene nanosheets into a conductive network by enhancing the interactions between MXene nanosheets. The prepared aerogel exhibited the shielding effectiveness of 48.59 dB in the X-band and an electrical conductivity of 0.34 S·cm-1. Meanwhile, the composite aerogel also possessed excellent thermal insulation, infrared stealth, mechanical and hydrophobic properties, and can be used as a wearable protective device to protect the human body from injuries in different scenarios while providing electromagnetic interference shielding protection.
Collapse
Affiliation(s)
- Hongbin Chai
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jiawei Luo
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jun Li
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Yu Y, Jin S, Yu Z, Xing J, Chen H, Li K, Liu C, Deng C, Xiao H. Deep eutectic supramolecular polymer functionalized MXene for enhancing mechanical properties, photothermal conversion, and bacterial inactivation of cellulose textiles. Int J Biol Macromol 2024; 267:131512. [PMID: 38608972 DOI: 10.1016/j.ijbiomac.2024.131512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Two-dimensional (2D) transition metal carbides (Ti3C2Tx MXene) have gained significant attention for their potential in constructing diverse functional materials, However, MXene is easily oxidized and weakly bound to the cellulose matrix, which pose challenges in developing MXene-decorated non-woven fabric with strong bonding and stable thermal management properties. Herein, we successfully prepared deep eutectic supramolecular polymer (DESP) functionalized MXene to address these issues. MXene can be wrapped with DESP to be insulated from water and protected from being oxidized. Subsequently, we achieved an efficient in-situ deposition of DESP-functionalized MXene onto fibers through a combination of dip coating and photopolymerization technique. The resulting nonwoven fabric (CNs-DESP@M) exhibited excellent photothermal conversion properties along with rapid thermal response and functional stability. Interestingly, the interface bonding between MXene and the fiber surface was significantly enhanced due to the abundant pyrogallol groups in DESP, resulting in the composite textile exhibiting commendable mechanical properties (2.68 MPa). Moreover, the as-prepared textile demonstrates outstanding bactericidal efficacy against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The multifunctional textile, created through a facile and efficient approach, demonstrates remarkable potential for applications in smart textiles, catering to the diverse needs of individuals in the future.
Collapse
Affiliation(s)
- Yuqing Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shicun Jin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhaochuan Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jieping Xing
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Kuang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Deng
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440 Bayreuth, Germany
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada.
| |
Collapse
|