1
|
Guan C, Wang C, Fu S. Food Protein Nanofibril Gels: From Conditions, Types and Properties to Applications. Foods 2024; 13:2173. [PMID: 39063257 PMCID: PMC11276258 DOI: 10.3390/foods13142173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Many food proteins can be assembled into nanofibrils under pH conditions far from the isoelectric point and with a low ionic strength by heating them for a long period. These food protein nanofibrils (FPN) have outstanding functional and biological properties and are considered sustainable biomaterials in many fields. In this study, we review the recent developments in FPN gels and introduce the key factors in promoting food protein self-assembly in order to create functional gels. The major variables discussed are the morphology of nanofibrils, protein concentration, heating time, and the type and concentration of salts. We also highlight current advances in the formation and properties of different types of FPN gels. In addition, the various applications of FPN gels in bioactive and nutrient delivery, adsorbents for CO2 and toxic pollutants, cell scaffolding biomaterials, biosensors, and others are introduced and discussed.
Collapse
Affiliation(s)
- Chen Guan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Quality Supervising and Testing Center of Ministry of Agriculture and Rural Affairs for Agricultural Products and Processed Goods, Daqing 163319, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shixin Fu
- Institute of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
2
|
Grabowska O, Samsonov SA, Kogut-Günthel MM, Żamojć K, Wyrzykowski D. Elucidation of binding mechanisms of bovine serum albumin and 1-alkylsulfonates with different hydrophobic chain lengths. Int J Biol Macromol 2024; 266:131134. [PMID: 38537848 DOI: 10.1016/j.ijbiomac.2024.131134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
In this article, the binding interactions between bovine serum albumin (BSA) and three 1-alkylsulfonates, namely sodium 1-dodecanesulfonate, sodium 1-decanesulfonate, and sodium 1-octanesulfonate, have been thoroughly investigated. The study employed various experimental techniques such as isothermal titration calorimetry (ITC), steady-state fluorescence spectroscopy (SF), circular dichroism spectroscopy (CD), and molecular dynamics-based simulations. The objective was to understand the influence of the alkyl chain length of the investigated ligands on several aspects, including the strength of the interaction, the stoichiometry of the resulting complexes, the number of BSA binding sites, and the underlying mechanisms of binding. Notably, the study also demonstrated that sodium dodecyl sulfate (S12S) can serve as an effective site marker for BSA when studying ligands with similar structural and topological features. These findings may have significant implications for enhancing our understanding of the interactions between small amphiphilic molecules and proteins.
Collapse
Affiliation(s)
- Ola Grabowska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Małgorzata M Kogut-Günthel
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, 85354 Freising, Germany
| | - Krzysztof Żamojć
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
3
|
Jin X, Xu Z, Zhang M, Jia W, Xie D. Potential toxic effects of perfluorobutanesulfonyl fluoride analysis based on multiple-spectroscopy techniques and molecular modelling analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123677. [PMID: 38039643 DOI: 10.1016/j.saa.2023.123677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Perfluorobutanesulfonyl fluoride (PBSF) has been used in the manufacture of fluorochemicals. Since PBSF is not biodegradable, the predicted environmental levels of PBSF are also expected to rise over time. In recent years, there has been a rise in the levels of PBSF in humans. In order to clarify the impact of PBSF on the accumulation of substances in the human body, we examined the interaction mechanism between PBSF and bovine serum albumin (BSA). To investigate the interaction mechanism between PBSF and BSA, we utilized a range of methods including UV-visible spectrophotometry, fluorescence spectroscopy, circular dichroism, molecular docking simulation, and molecular dynamics (MD) simulation. The inherent fluorescence of BSA was effectively suppressed by PBSF through fluorescence quenching analysis, using a static mechanism. The Ka value of 1.34 × 105 mol-1 L indicated a strong binding between PBSF and BSA. Further analysis of the interaction between PBSF and BSA involved examining thermodynamic parameters, fluorescence resonance energy transfer, and conducting other theoretical calculations. These investigations produced results that were in strong accordance with the experimental observations. The participation of hydrophobic interactions between BSA and PBSF was uncovered through molecular docking and MD simulation investigations. Furthermore, this investigation explored the impact of copper ions (Cu2+) and calcium ions (Ca2+) on the interaction between PBSF and BSA, establishing a vital basis for comprehending the mechanism by which PBSF affects proteins in the human surroundings.
Collapse
Affiliation(s)
- Xiangying Jin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ziang Xu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Manwen Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Wenchao Jia
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Danping Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
4
|
Xiao T, Chen Y, Xu Y, Song Y, Ren X, Wang W, Zhuang K, Chen X, Cai G. Higher urinary glyphosate exposure is associated with increased risk of liver dysfunction in adults: An analysis of NHANES, 2013-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-30463-2. [PMID: 37858023 DOI: 10.1007/s11356-023-30463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Glyphosate (GLY) exposure, both exogenous and endogenous, is a global concern. Multiple studies of model systems in vitro and in vivo have demonstrated the potential toxic effects of GLY exposure on human organs, particularly the liver and renal system. However, there is currently limited epidemiological evidence establishing a link between GLY exposure and hepatorenal function in the general population. In this study, a multivariable linear regression model and forest plots were employed to evaluate the connection between urinary GLY and biomarkers of hepatorenal function in 2241 participants from the National Health and Nutrition Examination Survey 2013-2016. Additionally, subgroup analyses were conducted based on age, gender, race, BMI, and chronic kidney disease (CKD). Alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), AST/ALT and fibrosis 4 score (FIB-4) all increased with elevated urinary GLY concentrations after adjusting for potential confounders, while albumin (ALB) exhibited the opposite trend, particularly among younger, female, non-Hispanic white, overweight, and CKD participants. Furthermore, individuals in the third tertile had a greater risk of liver dysfunction than those in the first tertile after categorizing urinary GLY concentrations. However, our study showed no proof that GLY exposure affects the ratio of urine albumin to creatinine (ACR) or serum creatinine levels. Overall, these results imply that GLY exposure may have adverse effects on human liver function.
Collapse
Affiliation(s)
- Tuo Xiao
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yuhao Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yue Xu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yanqi Song
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xuejing Ren
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Henan Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wenjuan Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Kaiting Zhuang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.
| |
Collapse
|
5
|
John R, Aravindakumar CT, Aravind UK. Delineating the cascade of molecular events in protein aggregation triggered by Glyphosate, aminomethylphosphonic acid, and Roundup in serum albumins. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132158. [PMID: 37567142 DOI: 10.1016/j.jhazmat.2023.132158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The molecular basis of protein unfolding on exposure to the widely used herbicide, Glyphosate (GLY), its metabolite aminomethylphosphonic acid (AMPA), and the commercial formulation Roundup have been probed using human and bovine serum albumins (HSA and BSA). Protein solutions were exposed to chemical stress at set experimental conditions. The study proceeds with spectroscopic and imaging tools. Steady-state and time-resolved fluorescence (TRF) measurements indicated polarity changes with the possibility of forming a ground-state complex. Atomic force microscopy imaging results revealed the formation of fibrils from BSA and dimer, trimer, and tetramer forms of oligomers from HSA under the chemical stress of GLY. In the presence of AMPA, serum albumins (SAs) form a compact network of oligomers. The compact network of oligomers was transformed into fibrils for HSA with increasing concentrations of AMPA. In contrast, Roundup triggered the formation of amorphous aggregates from SAs. Analysis of the Raman amide I band of all aggregates showed a significant increase in antiparallel β-sheet fractions at the expense of α-helix. The highest percentage, 24.6%, of antiparallel β-sheet fractions was present in amorphous aggregate formed from HSA under the influence of Roundup. These results demonstrated protein unfolding, which led to the formation of oligomers and fibrils.
Collapse
Affiliation(s)
- Reshmi John
- Inter University Instrumentation Centre (IUIC), India
| | - Charuvila T Aravindakumar
- Inter University Instrumentation Centre (IUIC), India; School of Environmental Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science and Technology (CUSAT), Kochi 682022, Kerala, India.
| |
Collapse
|
6
|
Fang L, Luo X, Wang Z, Yang W, Li H, Song S, Xie H, Hu J, Chen W, Liu Q. Design and Experiment of a Biomimetic Duckbill-like Vibration Chain for Physical Weed Control during the Rice Tillering Stage. Biomimetics (Basel) 2023; 8:430. [PMID: 37754181 PMCID: PMC10526935 DOI: 10.3390/biomimetics8050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The widespread use of chemical herbicides has jeopardized concerns about food safety and ecological consequences. To address these issues and reduce reliance on chemical herbicides, a physical weed control device was developed for the tillering stage in paddy fields. This device features a biomimetic duckbill-like vibration chain that effectively controls weed outbreaks. The chain penetrates the soft surface soil of the paddy field under gravity and rapidly stirs the soil through vibration, leading to the detachment of the weed roots anchored in the surface layer. Simultaneously, the device avoids mechanical damage to rice seedlings rooted in deeper soil. This study aimed to investigate the effects of chain structural parameters (the number of chain rows, vibration amplitude, and length of chains) and operational parameters (vibration frequency and working velocity) on weed control efficiency and rice seedling damage. Through a central composite regression field test, the optimal device structure and operational parameters were determined. The optimization results demonstrated that a vibration amplitude of 78.8 mm, a chain length of 93.47 cm, and 3.4 rows of chains, along with a vibration frequency and working velocity ranging from 0.5 to 1.25 m/s, achieved an optimal weeding effect. Under the optimal parameter combination, field test results demonstrated that approximately 80% of the weeds in the field were effectively cleared. This indicates that the design of the biomimetic duckbill-like vibration chain weeding device exhibits a relatively superior weeding performance, offering a practical solution for the management of weeds in rice fields.
Collapse
Affiliation(s)
- Longyu Fang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xiwen Luo
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Huangpu Innovation Research Institute, South China Agricultural University, Guangzhou 510725, China
| | - Zaiman Wang
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Huangpu Innovation Research Institute, South China Agricultural University, Guangzhou 510725, China
| | - Wenwu Yang
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Huangpu Innovation Research Institute, South China Agricultural University, Guangzhou 510725, China
| | - Hui Li
- Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shiyu Song
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Haoyang Xie
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Jianhao Hu
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Weiman Chen
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Qinghai Liu
- Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|