1
|
Chen X, Wang L, Zhang D, Bu N, Liu W, Wu Z, Mu R, Tan P, Zhong Y, Pang J. Enhancing Strawberry Freshness: Multifunction Sustainable Films Utilizing Two Types of Modified Carbon Nanotubes for Photothermal Food Packaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63964-63977. [PMID: 39504039 DOI: 10.1021/acsami.4c09955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Currently, antimicrobial films with stable and efficient antibacterial activities are receiving considerable attention in the food packaging industry. Herein, a chemically/physically linked konjac glucomannan-sodium alginate (KGM-SA)@carbon nanotubes (CNTs)/Fe3+ composite film with outstanding resistance to ultraviolet radiation, oxidation, and bacteria, as well as excellent photothermal effects and mechanical properties, was successfully prepared using a solvent flow method. Tannic acid-modified carboxyl-functionalized CNTs (TCCNTs), l-cysteine-modified carboxyl-functionalized CNTs (LCCNTs), and Fe3+ were incorporated into the prepared film. The film structure of KGM-SA@CNTs/Fe3+ was characterized using various methods, confirming the formation of a dual-cross-linked network through metal-coordination bonds and hydrogen bonding. This unique structure endowed the film with excellent water vapor permeability (3.58 g mm/m2 day kPa), water resistance (water contact angle = 93.66°), and thermal stability. Further, the film exhibited outstanding photothermal conversion efficiency and stability under near-infrared irradiation (300 mW/cm2) as well as excellent bactericidal properties against Staphylococcus aureus and Escherichia coli, achieving a bacterial inhibition rate of >99%. In a strawberry preservation experiment, the KGM-SA@CNTs/Fe3+ composite film exhibited remarkable preservation effects, extending the shelf life of strawberries by 4-6 d. Thus, this photothermal antibacterial film offers a new approach for the application of CNTs in food packaging.
Collapse
Affiliation(s)
- Xianrui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Di Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nitong Bu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Zhenzhen Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pingping Tan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanbo Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Zhang Y, Guo Z, Mo X, Su C, Chen Y, Qiu R, Pang J, Wu S. Addition of konjac glucomannan improves spraying efficiency on fruits and vegetables: Effect of surface hydrophilicity and molecular weight. Int J Biol Macromol 2024; 262:130012. [PMID: 38331076 DOI: 10.1016/j.ijbiomac.2024.130012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Biomacromolecules have attracted interest as spraying additives due to their degradability, renewability, and non-toxicity. However, microscopic mechanism of the biomacromolecules regulating the droplet behavior on fruits and vegetables is still unclear. In this study, konjac glucomannan (KGM) was used to improve the spraying efficiency and the fresh-keeping performance of tea polyphenols solution. KGM increased effective spreading ratio on hydrophilic surfaces and retention ratio of the main droplet on hydrophobic surfaces, thus improving spraying efficiency. Computational fluid dynamics and Brown dynamics simulations were implemented to investigate KGM behaviors during droplets colliding on hydrophilic and hydrophobic surfaces. Most KGM molecules extended and then collapsed in gradually weakened shear flow. Meanwhile, on the hydrophobic surface, most KGM molecules were continuously stretched by the unstable flow field. As the KGM extended, the kinetic energy of droplets converted into elastic energy stored in the KGM, promoting the stability of droplets on target surfaces and improving the spraying efficiency. The KGM molecular weight of 3.8 × 105 Da was optimal from the point of energy storage density. This study provides more understanding of the mechanism of biomacromolecules on spraying efficiency and guidance to develop biomass spraying additives for fruit and vegetable preservation.
Collapse
Affiliation(s)
- Yanting Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyuan Mo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Che Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renhui Qiu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shuyi Wu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China.
| |
Collapse
|
3
|
Sun Y, Xu X, Zhang Q, Zhang D, Xie X, Zhou H, Wu Z, Liu R, Pang J. Review of Konjac Glucomannan Structure, Properties, Gelation Mechanism, and Application in Medical Biology. Polymers (Basel) 2023; 15:polym15081852. [PMID: 37111999 PMCID: PMC10145206 DOI: 10.3390/polym15081852] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Konjac glucomannan (KGM) is a naturally occurring macromolecular polysaccharide that exhibits remarkable film-forming and gel-forming properties, and a high degree of biocompatibility and biodegradability. The helical structure of KGM is maintained by the acetyl group, which plays a crucial role in preserving its structural integrity. Various degradation methods, including the topological structure, can enhance the stability of KGM and improve its biological activity. Recent research has focused on modifying KGM to enhance its properties, utilizing multi-scale simulation, mechanical experiments, and biosensor research. This review presents a comprehensive overview of the structure and properties of KGM, recent advancements in non-alkali thermally irreversible gel research, and its applications in biomedical materials and related areas of research. Additionally, this review outlines prospects for future KGM research, providing valuable research ideas for follow-up experiments.
Collapse
Affiliation(s)
- Yilan Sun
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaowei Xu
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinhua Zhang
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Zhang
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyu Xie
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanlin Zhou
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenzhen Wu
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Liu L, Zhang Y, Dao L, Huang X, Qiu R, Pang J, Wu S. Efficient and accurate multi-scale simulation for viscosity mechanism of konjac glucomannan colloids. Int J Biol Macromol 2023; 236:123992. [PMID: 36898457 DOI: 10.1016/j.ijbiomac.2023.123992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
The viscosity is a foundational parameter of biomacromolecule in the food industry. The viscosity of macroscopic colloids is closely related to the dynamical behaviors of mesoscopic biomacromolecule clusters, which are difficult to be investigated at molecular resolution by common methods. In this study, based on experimental data, multi-scale simulations combining microscopic molecular dynamics simulation, mesoscopic Brownian dynamics simulation, and macroscopic flow field construction were used to investigate the dynamical behaviors of mesoscopic clusters of konjac glucomannan (KGM) colloids (~500 nm) over a long time (~100 ms). Numerical statistical parameters of the mesoscopic simulation of macroscopic clusters were proposed and proved to represent the viscosity of colloids. Based on the intermolecular interaction and macromolecular conformation, the mechanism of the shear thinning effect was revealed as both the regular arrangement of macromolecules at low shear rates (<100 s-1) and structural collapse of macromolecules at high shear rates (>500 s-1). Then, the effect of molecular concentration, molecular weight, and temperature on the colloid viscosity and cluster structure of KGM colloids was investigated by experiments and simulations. This study provides a novel multi-scale numerical method and insight into the viscosity mechanism of biomacromolecule.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yanting Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liping Dao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xin Huang
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China
| | - Renhui Qiu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Shuyi Wu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China.
| |
Collapse
|