1
|
Alemi PS, Mohamadali M, Arabahmadi S, Irani S, Sharifi F. Carboxymethyl Chitosan and Chitosan as a Bioactive Delivery System: A Review. Biotechnol Appl Biochem 2025:e2758. [PMID: 40275440 DOI: 10.1002/bab.2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/16/2025] [Indexed: 04/26/2025]
Abstract
The functionality and mechanism of bioactive agents (BA) in treating various diseases have been studied as a progressive route. Designing an effective delivery system for transferring these molecules and components is a major challenge. For that reason, a wide range of biomaterials has been introduced to deliver BA to the target tissue or cells. Chitosan (CTS) is a nontoxic, biocompatible, biodegradable, and notable point low-cost polymer, and, as a result, can be effectively utilized in the formulation of diverse delivery systems, in biomedical applications. However, CTS has some limitations, such as poor solubility in aqueous and alkaline media, rapid swelling and degradation, and consequence fast release agent. The CTS derivative carboxymethyl chitosan (CMC) is an acceptable candidate for overcoming these limitations. CMC is a high-impact grade for pharmaceutical and biomedical applications because of its nontoxic, biocompatible, biodegradable, gelation, mucoadhesive, antibacterial, and antifungal. CMC bioactivity potentials are related to carboxyl and methyl groups added through chemical modification in the CTS backbone. In this review, the physical and chemical properties of CTS and CMC have been introduced and discussed. Afterward, its biomedical applications with delivery approaches for various BA (drugs, genes, proteins), microfluidic, and cancer have been considered.
Collapse
Affiliation(s)
- Parinaz Sadat Alemi
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Marjan Mohamadali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samira Arabahmadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fereshteh Sharifi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Păduraru L, Panainte AD, Peptu CA, Apostu M, Vieriu M, Bibire T, Sava A, Bibire N. Smart Drug Delivery Systems Based on Cyclodextrins and Chitosan for Cancer Therapy. Pharmaceuticals (Basel) 2025; 18:564. [PMID: 40283999 PMCID: PMC12030441 DOI: 10.3390/ph18040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Despite improvements in therapeutic approaches like immunotherapy and gene therapy, cancer still remains a serious threat to world health due to its high incidence and mortality rates. Limitations of conventional therapy include suboptimal targeting, multidrug resistance, and systemic toxicity. A major challenge in current oncology therapies is the development of new delivery methods for antineoplastic drugs that act directly on target. One approach involves the complexation of antitumor drugs with cyclodextrins (CDs) and chitosan (CS) as an attempt to counteract their primary limitations: low water solubility and bioavailability, diminished in vitro and in vivo stability, and high dose-dependent toxicity. All those drawbacks may potentially exclude some therapeutic candidates from clinical trials, thus their integration into smart delivery systems or drug-targeting technologies must be implemented. We intended to overview new drug delivery systems based on chitosan or cyclodextrins with regard to the current diagnosis and cancer management. This narrative review encompasses full-length articles published in English between 2019 and 2025 (including online ahead of print versions) in PubMed-indexed journals, focusing on recent research on the encapsulation of diverse antitumor drugs within those nanosystems that exhibit responsiveness to various stimuli such as pH, redox potential, and folate receptor levels, thereby enhancing the release of bioactive compounds at tumor sites. The majority of the cited references focus on the most notable research, studies of novel applications, and scientific advancements in the field of nanostructures and functional materials employed in oncological therapies over the last six years. Certainly, there are additional stimuli with research potential that can facilitate the drug's release upon activation, such as reactive oxygen species (ROS), various enzymes, ATP level, or hypoxia; however, our review exclusively addresses the aforementioned stimuli presented in a comprehensive manner.
Collapse
Affiliation(s)
- Larisa Păduraru
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 16th Universitatii Street, 700116 Iasi, Romania; (L.P.); (M.A.); (M.V.); (A.S.); (N.B.)
| | - Alina-Diana Panainte
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 16th Universitatii Street, 700116 Iasi, Romania; (L.P.); (M.A.); (M.V.); (A.S.); (N.B.)
| | - Cătălina-Anișoara Peptu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 71st Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iasi, Romania
| | - Mihai Apostu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 16th Universitatii Street, 700116 Iasi, Romania; (L.P.); (M.A.); (M.V.); (A.S.); (N.B.)
| | - Mădălina Vieriu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 16th Universitatii Street, 700116 Iasi, Romania; (L.P.); (M.A.); (M.V.); (A.S.); (N.B.)
| | - Tudor Bibire
- “St. Spiridon” County Clinical Emergency Hospital, 1st Independentei Blvd., 700111 Iasi, Romania;
| | - Alexandru Sava
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 16th Universitatii Street, 700116 Iasi, Romania; (L.P.); (M.A.); (M.V.); (A.S.); (N.B.)
| | - Nela Bibire
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy from Iasi, 16th Universitatii Street, 700116 Iasi, Romania; (L.P.); (M.A.); (M.V.); (A.S.); (N.B.)
| |
Collapse
|
3
|
Fu C, Gong S, Lin L, Bao Y, Li L, Chen Q. Characterization and efficacy of C 60 nano-photosensitive drugs in colorectal cancer treatment. Biomed Pharmacother 2024; 176:116828. [PMID: 38810406 DOI: 10.1016/j.biopha.2024.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Fullerenes C60 shows great potential for drug transport. C60 generates large amounts of singlet oxygen upon photoexcitation, which has a significant inhibitory effect on tumor cells, so the photosensitive properties of C60 were exploited for photodynamic therapy of tumors by laser irradiation. METHODS In this study, C60-NH2 was functionalized by introducing amino acids on the surface of C60, coupled with 5-FU to obtain C60 amino acid-derived drugs (C60AF, C60GF, C60LF), and activated photosensitive drugs (C60AFL, C60GFL, C60LFL) were obtained by laser irradiation. The C60 nano-photosensitive drugs were characterized in various ways, and the efficacy and safety of C60 nano-photosensitive drugs were verified by cellular experiments and animal experiments. Bioinformatics methods and cellular experiments were used to confirm the photosensitive drug targets and verify the therapeutic targets with C60AF. RESULTS Photosensitised tumor-targeted drug delivery effectively crosses cell membranes, leads to more apoptotic cell death, and provides higher anti-tumor efficacy and safety in vitro and in vivo colorectal cancer pharmacodynamic assays compared to free 5-FU.C60 photosensitized drug promotes tumor killing by inhibiting the colorectal cancer FLOR1 tumor protein target, with no significant toxic effects on normal organs. CONCLUSION C60 photosensitized drug delivery systems are expected to improve efficacy and reduce side effects in the future treatment of colorectal cancer. Further and better development and design of drugs and vectors for colorectal cancer therapy.
Collapse
Affiliation(s)
- Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Pharmaceutical Sciences Laboratory Center, School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| | - Lu Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Yanru Bao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| | - Li Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| | - Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
4
|
Ma W, Zhao Q, Zhu S, Wang X, Zhang C, Ma D, Li N, Yin Y. Construction of glutathione-responsive paclitaxel prodrug nanoparticles for image-guided targeted delivery and breast cancer therapy. RSC Adv 2024; 14:12796-12806. [PMID: 38645515 PMCID: PMC11027725 DOI: 10.1039/d4ra00610k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024] Open
Abstract
Paclitaxel (PTX) remains an essential drug in the treatment of breast cancer. To improve metabolic stability and real-time monitoring of drug location, we develop a visualized nano-prodrug. Novel hyaluronic acid (HA)-coated glutathione (GSH)-sensitive chitosan (CS)-based nano-prodrug (HA/TPE-CS-SS-PTX NPs) with aggregation-induced emission effects (AIE) were accomplished. The prodrug NPs (drug loading 29.32%, particle size 105 nm, regular sphericity) exhibit excellent fluorescence stability. The prodrug NPs could target tumor cells with high expression of CD44 and decompose in the presence of high concentrations of glutathione. In vitro evaluations revealed that the prodrug NPs have significant cytotoxicity on 4T1 cells, and due to their excellent AIE characteristics, their position in cells can be tracked. Moreover, the prodrug NPs also shown superior anti-tumor effects in vivo experimental. Overall, the HA/TPE-CS-SS-PTX NPs we constructed have excellent bio-imaging capabilities and can be served as a potential nanomedicine for PTX delivery against breast cancer.
Collapse
Affiliation(s)
- Weiwei Ma
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| | - Qiufeng Zhao
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| | - Shilong Zhu
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| | - Xinyue Wang
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| | - Chuangchuang Zhang
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| | - Daming Ma
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| | - Na Li
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| | - Yanyan Yin
- School of Pharmacy, Xinxiang Medical University Henan 453003 P. R. China
| |
Collapse
|
5
|
Wang P, Yang Y, Wen H, Li D, Zhang H, Wang Y. Progress in construction and release of natural polysaccharide-platinum nanomedicines: A review. Int J Biol Macromol 2023; 250:126143. [PMID: 37544564 DOI: 10.1016/j.ijbiomac.2023.126143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Natural polysaccharides are natural biomaterials that have become candidate materials for nano-drug delivery systems due to their excellent biodegradability and biocompatibility. Platinum (Pt) drugs have been widely used in the clinical therapy for various solid tumors. However, their extensive systemic toxicity and the drug resistance acquired by cancer cells limit the applications of platinum drugs. Modern nanobiotechnology provides the possibility for targeted delivery of platinum drugs to the tumor site, thereby minimizing toxicity and optimizing the efficacies of the drugs. In recent years, numerous natural polysaccharide-platinum nanomedicine delivery carriers have been developed, such as nanomicelles, nanospheres, nanogels, etc. Herein, we provide an overview on the construction and drug release of natural polysaccharide-Pt nanomedicines in recent years. Current challenges and future prospectives in this field are also put forward. In general, combining with irradiation and tumor microenvironment provides a significant research direction for the construction of natural polysaccharide-platinum nanomedicines and the release of responsive drugs in the future.
Collapse
Affiliation(s)
- Pengge Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; College of Biological and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province 211816, China
| | - Yunxia Yang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng 224007, China.
| | - Haoyu Wen
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Dongqing Li
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Hongmei Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Yanqing Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China.
| |
Collapse
|