1
|
Tian C, Duan C, Bie Y, Liu X, Zhou B, Ma R, Fan Q, Xie Z, Ni Y. A deep eutectic solvent with bifunctional acid sites treatment to upgrade a bamboo kraft pulp into a cellulose-acetate grade dissolving pulp. Carbohydr Polym 2025; 348:122942. [PMID: 39567157 DOI: 10.1016/j.carbpol.2024.122942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
Valorization of non-wood pulp, such as bamboo bleached kraft pulp into high-purity cellulose acetate (CA)-grade dissolving pulp is crucial but challenging in China. Herein, a series of metal salt-based deep eutectic solvents (MSDESs) involving various ZnCl2-urea (U), ZnCl2-glycerol (G), and ZnCl2-lactic acid (LA) are comparatively investigated for this purpose. Thanks to the bifunctional acid sites of Lewis acid ZnCl2 and Brønsted acid LA, the ZnCl2-LA MSDES has the highest acidity (2.62) and interaction affinity to bamboo fibers, leading to the highest efficiency in simultaneous pulp purification and activation. As a result, the resultant upgraded pulp from ZnCl2-LA (DES3-F) features remarkable improvements in purity (from 80.8 % to 93.1 %), intrinsic viscosity (from 897 to 419 mg/L), and reactivity (from 18.1 % to 80.8 %). Moreover, the modified acetate product has a high degree of substitution of 2.84 and a yield of 75.5 %. In short, such a proposed MSDES treatment can offer a promising and alternative approach for the manufacture of high-quality dissolving pulp and its derivatives.
Collapse
Affiliation(s)
- Chaochao Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Yibin Grace Group Co., Ltd, Yinbin 644000, China.
| | - Yuchen Bie
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoshuang Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bingxu Zhou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruoteng Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qi Fan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zengyin Xie
- Yibin Grace Group Co., Ltd, Yinbin 644000, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
2
|
Du G, Wang J, Liu Y, Yuan J, Liu T, Cai C, Luo B, Zhu S, Wei Z, Wang S, Nie S. Fabrication of Advanced Cellulosic Triboelectric Materials via Dielectric Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206243. [PMID: 36967572 PMCID: PMC10214270 DOI: 10.1002/advs.202206243] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/19/2023] [Indexed: 05/27/2023]
Abstract
The rapid rise of triboelectric nanogenerators (TENGs), which are emerging energy conversion devices in advanced electronics and wearable sensing systems, has elevated the interest in high-performance and multifunctional triboelectric materials. Among them, cellulosic materials, affording high efficiency, biodegradability, and customizability, are becoming a new front-runner. The inherently low dielectric constant limits the increase in the surface charge density. However, owing to its unique structure and excellent processability, cellulose shows great potential for dielectric modulation, providing a strong impetus for its advanced applications in the era of Internet of Things and artificial intelligence. This review aims to provide comprehensive insights into the fabrication of dielectric-enhanced cellulosic triboelectric materials via dielectric modulation. The exceptional advantages and research progress in cellulosic materials are highlighted. The effects of the dielectric constant, polarization, and percolation threshold on the charge density are systematically investigated, providing a theoretical basis for cellulose dielectric modulation. Typical dielectric characterization methods are introduced, and their technical characteristics are analyzed. Furthermore, the performance enhancements of cellulosic triboelectric materials endowed by dielectric modulation, including more efficient energy harvesting, high-performance wearable electronics, and impedance matching via material strategies, are introduced. Finally, the challenges and future opportunities for cellulose dielectric modulation are summarized.
Collapse
Affiliation(s)
- Guoli Du
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jinlong Wang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Yanhua Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Jinxia Yuan
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Tao Liu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Chenchen Cai
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Bin Luo
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Siqiyuan Zhu
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Zhiting Wei
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangfei Wang
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| | - Shuangxi Nie
- School of Light Industry and Food EngineeringGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
3
|
Zhao M, An X, Fan Z, Nie S, Cheng Z, Cao H, Zhang X, Mian MM, Liu H, Liu L. A feruloyl esterase/cellulase integrated biological system for high-efficiency and toxic-chemical free isolation of tobacco based cellulose nanofibers. Carbohydr Polym 2023; 313:120885. [PMID: 37182973 DOI: 10.1016/j.carbpol.2023.120885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Tobacco based cellulose nanofiber (TCNF) is a novel nanocellulose that has recently been used to replace undesirable wood pulp fibers in the preparation of reconstructed tobacco sheets (RTS). However, given the strict requirements for controlling toxic chemical content in tobacco products, there is a global interest in developing a green, efficient, and toxic-chemical free approach to isolate TCNF from tobacco stem as a bioresource. In this study, we propose a creative and environmentally friendly method to efficiently and safely isolate TCNF from tobacco stem pulp, which involves integrated biological pretreatment followed by a facile mechanical defibrillation process. Feruloyl esterase is used to pretreat the stem pulp by disrupting the ether and ester bonds between lignin and polysaccharide carbohydrates within the fiber wall, which effectively facilitates cellulase hydrolysis and swelling of the stem pulp fiber, as well as the following mechanical shearing treatment for TCNF isolation. The results demonstrate that TCNF obtained by the comprehensive feruloyl esterase/cellulase/mechanical process exhibit uniform and well-dispersed nanofiber morphology, higher crystallinity, and stronger mechanical properties than those of the control. The addition of 0.5 % TCNF can replace wood pulp by 18 wt% ~ 25 wt% in the production of RTS samples while maintaining their reasonable strength properties.
Collapse
|
4
|
Huang H, Mao L, Wang W, Li Z, Qin C. A facile strategy to fabricate antibacterial hydrophobic, high-barrier, cellulose papersheets for food packaging. Int J Biol Macromol 2023; 236:123630. [PMID: 36773867 DOI: 10.1016/j.ijbiomac.2023.123630] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
As a traditionally used packaging material, natural cellulose-based paper has poor barrier properties to water and oxygen, which severely limits its wide application in food packaging. In this study, we report a new sustainable approach to producing hydrophobic, high-barrier, and antibacterial packaging materials from cellulose paper. In this process, commercially available microcrystalline cellulose was first modified by long-chain stearic acid to form hydrophobic microcrystalline cellulose ester and then mixed with stearic acid as filler in the subsequent surface coating of bagasse fibre paper. The microcrystalline cellulose ester/stearic acid-coated paper (MSP) exhibited good water repellency and oxygen barrier activity due to a continuous hydrophobic film that formed, which completely covered the pores of the original bagasse fibre paper. The coated MSP sample also showed excellent dimensional stability in water and a good wet tensile strength of 16 MPa. In addition, poly(hexamethylene guanidine) (PHMG) was chemically grafted onto the free carboxyl groups of the MSP surface layer, and the resulting MSP-g-PHMG samples exhibited excellent antibacterial activity against Escherichia coli and Listeria monocytogenes. The biodegradable cellulose-based MSP-g-PHMG sample significantly delayed the decay of raspberry during storage, indicating its potential application in food packaging.
Collapse
Affiliation(s)
- Haibo Huang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Long Mao
- Fujian Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Wei Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, PR China.
| | - Zhihan Li
- Biomass Molecular Engineering Center, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China.
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
5
|
Duan C, Tian C, Feng X, Tian G, Liu X, Ni Y. Ultrafast process of microwave-assisted deep eutectic solvent to improve properties of bamboo dissolving pulp. BIORESOURCE TECHNOLOGY 2023; 370:128543. [PMID: 36581230 DOI: 10.1016/j.biortech.2022.128543] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Viscosity control and reactivity enhancement are critical to produce high-quality cellulose products, such as dissolving pulp, yet remain challenging. In this work, an ultrafast process, namely microwave-assisted deep eutectic solvent (MW-DES), is proposed for this purpose. It is based on the hypothesis that the MW-DES process can deliver an enhanced synergy: a simultaneous fiber swelling and cellulose depolymerization via hydrogen-bonding break-up and acid hydrolysis from the actions of polar and acidic DES further boosted under MW irradiation. Results showed that after the MW-DES (Choline chloride- oxalic acid, ChCl-OA) treatment for only 40 s, the pulp viscosity decreased from 715 to 453 mL/g, and the reactivity increased from 43.0 % to 84.6 %, which is ultrafast in comparison with those reported work. Furthermore, DES in the process shows a high reusability and chemical stability, thus offering a simple, sustainable and effective alternative for upgrading of dissolving pulp, particularly, using non-wood materials of bamboo.
Collapse
Affiliation(s)
- Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Chaochao Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaomeng Feng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guodong Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoshuang Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|