1
|
Lv C, Wei J, Hu F, Bian L, Ouyang Q. Effect of Sulfur Vacancies of CoNi 2S 4 on Its Electrochemical Performance in Hybrid Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27386-27395. [PMID: 39686533 DOI: 10.1021/acs.langmuir.4c03634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Ternary cobalt nickel sulfides are considered promising electrode materials due to their unique physical properties. However, its capacitive performance is still limited by the insufficient material utilization efficiency. Here, we design and fabricate CoNi2S4 with nanorods and hairy-petal-like nanosheets on nickel foam (NF) as an excellent self-standing electrode for a hybrid supercapacitor (HSC). The CoNi2S4 electrode material was synthesized on the NF substrate by cobalt organic framework (Co-MOF) conversion and introducing sulfur ion and nickel ion exchange. The CoNi2S4 electrode material with sulfur vacancies was controlled by regulating the reduction time, and then electrochemical analysis and comparison were performed. The results demonstrate that the synergistic effect of the MOF-derived CoNi2S4 skeleton and sulfur vacancies can significantly improve the electrochemical activity of nickel cobalt sulfide. The CoNi2S4 electrode exhibits a superior high specific capacitance of 5.24 F/cm2 at a current density of 3 mA/cm2. Furthermore, the assembled CoNi2S4-60//AC HSC displays a high energy density of 59.41 Wh/kg and a power density of 999.98 W/kg. Even after 10,000 continuous charge-discharge cycles, its initial capacitance was retained at 89.24%. These results demonstrate the feasibility and practicality of CoNi2S4-60 as an electrode material, showcasing its potential for real-world applications.
Collapse
Affiliation(s)
- Chenglong Lv
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jinhe Wei
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Fei Hu
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Limin Bian
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qiuyun Ouyang
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
2
|
Fu Y, Yuan Y, Shen Q, Xu H, Ye Z, Guo L, Wu X, Zhao Y. Acid-modified biomass-based N-doped O-rich hierarchical porous carbon as a high-performance electrode for supercapacitors. Phys Chem Chem Phys 2024. [PMID: 39015944 DOI: 10.1039/d4cp01914h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
In contemporary society, the conversion and efficient utilization of waste biomass and its derivatives are of great significance. Carbonized wood (CW) is an easily accessible and cost-effective green resource, but it has limitations as an electrode material due to its low specific surface area, limited active sites and poor conductivity. Therefore, it is crucial to improve the performance of biomass-based materials by using activation, heteroatom doping and modification methods to enhance the specific surface area and active sites. In this study, we developed acid-modified urea-doped activated carbonized wood (AUACW) with a three-dimensional (3D) porous structure and porosity, achieving a high specific surface area of 1321.3 m2 g-1. In addition, the degree of graphitization (ID/IG = 1.0) provides good conductivity and a large number of active sites, which are conducive to charge transfer and ion diffusion. The increase of nitrogen and oxygen elements enhances the surface wettability of the material and provides additional pseudocapacitance. The specific capacitance of AUACW reaches 435.84 F g-1 at 0.8 A g-1 with a 93.6% capacitance retention after 10 000 cycles in a 1 M KOH electrolyte. More attractively, a symmetrical supercapacitor (SSC) based on AUACW delivers an energy density of 22.61 W h kg-1 at a power density of 533.26 W kg-1. This work demonstrates the promising potential of utilizing waste biomass to develop green and valuable carbon materials for supercapacitors.
Collapse
Affiliation(s)
- Yuanzun Fu
- College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China.
| | - Yuan Yuan
- College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China.
| | - Qian Shen
- College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China.
| | - Hao Xu
- College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China.
| | - Zheng Ye
- College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China.
| | - Li Guo
- College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China.
| | - Xiaoliang Wu
- College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China.
| | - Yunhe Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University, 26 Hexing Road, Harbin, 150040, P. R. China.
| |
Collapse
|
3
|
Yan J, Lu J, Sheng Y, Sun Y, Zhang D. Research Progress in the Preparation of Transition Metal Sulfide Materials and Their Supercapacitor Performance. MICROMACHINES 2024; 15:849. [PMID: 39064360 PMCID: PMC11279019 DOI: 10.3390/mi15070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
Transition metal sulfides are widely used in supercapacitor electrode materials and exhibit excellent performance because of their rich variety, low price, and high theoretical specific capacity. At present, the main methods to prepare transition metal sulfides include the hydrothermal method and the electrochemical method. In order to further improve their electrochemical performance, two aspects can be addressed. Firstly, by controllable synthesis of nanomaterials, porous structures and large surface areas can be achieved, thereby improving ion transport efficiency. Secondly, by combining transition metal sulfides with other energy storage materials, such as carbon materials and metal oxides, the synergy between different materials can be fully utilized. However, future research still needs to address some challenges. In order to guide further in-depth research, it is necessary to combine the current research-derived knowledge and propose a direction for future development of transition metal sulfide electrode materials.
Collapse
Affiliation(s)
- Jin Yan
- Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Jiancheng Lu
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuxuan Sheng
- School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yin Sun
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Dapeng Zhang
- Naval Architecture and Shipping College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Intelligent Equipment for South China Sea Marine Ranching, Guangdong Ocean University, Zhanjiang 524088, China;
| |
Collapse
|
4
|
Liang X, Tang LJ, Zhang YC, Zhu XD, Gao J. Robust Graphene-based Aerogel for Integrated 3D Asymmetric Supercapacitors with High Energy Density. Chem Asian J 2024; 19:e202400243. [PMID: 38551466 DOI: 10.1002/asia.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Three-dimensional asymmetric supercapacitors (3D ASC) have garnered significant attention due to their high operating window, theoretical energy density, and circularity. However, the practical application of 3D electrode materials is limited by brittleness and excessive dead volume. Therefore, we propose a controlled contraction strategy that regulates the pore structure of 3D electrode materials, eliminates dead volume in the 3D skeleton structure, and enhances mechanical strength. In this study to obtain reduced graphene oxide/manganese dioxide (rGO/MnO2) and reduced graphene oxide/carbon nanotube (rGO/CNT) composite aerogels with a stable and compact structure. MnO2 and CNT as nanogaskets, preventing the self-stacking of graphene nanosheets during the shrinkage process. Additionally, the high specific capacitor nanogaskets significantly enhance the specific energy density of the rGO aerogel electrode. The prepared rGO/MnO2//rGO/CNT 3D ASC exhibits a high mass-specific capacitance of 216.15 F g-1, a high mass energy density of 74 Wh kg-1 at 3.5 A g-1, and maintains a retention rate of capacitance at 99.89 % after undergoing 10,000 cycles of charge and discharge at 5 A g-1. The versatile and integrated assembly of 3D ASC units is achieved through the utilization of the robust mechanical structure of rGO-based aerogel electrodes, employing a mortise and tenon structural design.
Collapse
Affiliation(s)
- Xue Liang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Li-Jun Tang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yong-Chao Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiao-Dong Zhu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Jian Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| |
Collapse
|
5
|
Reddygunta KR, Šiller L, Ivaturi A. Screen-Printed Stretchable Supercapacitors Based on Tin Sulfide-Decorated Face-Mask-Derived Activated Carbon Electrodes with High Areal Energy Density. ACS APPLIED ENERGY MATERIALS 2024; 7:3558-3576. [PMID: 38756867 PMCID: PMC11094728 DOI: 10.1021/acsaem.3c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 05/18/2024]
Abstract
In this work, tin sulfide nanosheets decorated on face-mask-derived activated carbon have been explored as electrode material for electrochemical supercapacitors. A hydrothermal route was employed to grow tin sulfide on the surface and inside of high-surface-area face-mask-derived activated carbon, activated at 850 °C, to produce a hierarchical interconnected porous composite (ACFM-850/TS) structure. The presence of tin sulfide in the porous carbon framework exposed the surface active sites for rapid adsorption/desorption of electrolyte ions and ensured high utilization of the porous carbon surface. Furthermore, the porous ACFM-850 framework prevented the stacking/agglomeration of tin sulfide sheets, thereby enhancing the charge-transport kinetics in the composite electrodes. Benefiting from the synergistic effect of tin sulfide and ACFM-850, the resulting ACFM-850/TS composite exhibited an attractive specific capacitance of 423 F g-1 at a 0.5 A g-1 current density and superior rate capability (71.3% at a 30 A g-1 current density) in a 1.0 M Na2SO4 electrolyte. In addition, we fabricated a planar symmetric interdigitated supercapacitor on a stretchable Spandex fabric using an ACFM-850/TS composite electrode and carboxymethyl cellulose/NaClO4 as a solid-state gel electrolyte employing a scalable screen-printing process. The as-prepared stretchable supercapacitors displayed an ultrahigh energy density of 9.2 μWh cm-2 at a power density of 0.13 mW cm-2. In addition, they exhibited an excellent cyclic stability of 64% even after 10,000 charge-discharge cycles and 42% after 1000 continuous stretch (at 25% stretching)/release cycles. Such screen-printed interdigitated planar supercapacitors with activated carbon composite electrodes and a solid-state gel electrolyte act as promising low-cost energy-storage devices for wearable and flexible integrated electronic devices.
Collapse
Affiliation(s)
- Kiran
Kumar Reddy Reddygunta
- Smart
Materials Research and Device Technology (SMaRDT) Group, Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas Graham Building, Glasgow G1 1XL, U.K.
| | - Lidija Šiller
- School
of Engineering, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K.
| | - Aruna Ivaturi
- Smart
Materials Research and Device Technology (SMaRDT) Group, Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas Graham Building, Glasgow G1 1XL, U.K.
| |
Collapse
|
6
|
Qiao Y, He J, Zhou Y, Wu S, Li X, Jiang G, Jiang G, Demir M, Ma P. Flexible All-Solid-State Asymmetric Supercapacitors Based on PPy-Decorated SrFeO 3-δ Perovskites on Carbon Cloth. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37933868 DOI: 10.1021/acsami.3c10189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The defective structure and high oxygen vacancy concentration of SrFeO3-δ perovskite enable fast ion-electron transport, but its low conductivity still hinders the high electrochemical performance. Herein, to enhance the conductivity of SrFeO3-δ-based electrodes, polypyrrole-modified SrFeO3-δ perovskite on carbon cloth (PPy@SFO@CC) has been successfully fabricated by electrodeposition of polypyrrole (PPy) on the surface of SFO@CC. The optimal PPy700@SFO@CC electrode exhibits a specific capacitance of 421 F g-1 at 1 A g-1. It was found that the outside PPy layer not only accelerates the electron transport and ion diffusion but also creates more oxygen vacancies in SrFeO3-δ, enhancing the charge storage performance significantly. Moreover, the NiCo2O4@CC//PPy700@SFO@CC device maintains a specific capacitance of 63.6% after 3000 cycles, which is ascribed to the weak adhesion forces between the active materials and carbon cloth. Finally, the all-solid-state flexible supercapacitor NiCo2O4@CC//PPy700@SFO@CC is constructed with PVA-KOH as the solid electrolyte, delivering an energy density of 16.9 W h kg-1 at a power density of 984 W kg-1. The flexible supercapacitor retains 69% of its specific capacitance after 1000 bending and folding times, demonstrating a certain degree of foldability. The present study opens new avenues for perovskite oxide-based flexible all-solid-state supercapacitors.
Collapse
Affiliation(s)
- Yin Qiao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiahao He
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Zhou
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shibo Wu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoyan Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guangming Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Muslum Demir
- TUBITAK Marmara Research Center, Material Institute, Gebze 41470, Turkey
- Chemical Engineering, Osmaniye Korkut Ata University, Osmaniye 80000, Turkey
| | - Pianpian Ma
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
7
|
Wang B, Zhang X, Zhou J, Wang X, Tan F, Xu J. Controllable synthesis of Fe 3C-reinforced petal-like lignin microspheres with boosted electrochemical performance and its application in high performance supercapacitors. Int J Biol Macromol 2023; 251:126325. [PMID: 37579896 DOI: 10.1016/j.ijbiomac.2023.126325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
One more effective measure to solve the energy crisis caused by the shortage of fossil energy is to convert natural renewable resources into high-value chemical products for electrochemical energy storage. Lignin has broad application prospects in this field. In this paper, three kinds of lignin with different molecular weights were obtained by the ethanol/water grading of Kraft lignin (KL). Then, different surface morphology lignin microspheres were prepared by spray drying. Finally, petal-like microspheres were successfully prepared by mixing and grinding the above four kinds of surface morphology lignin microspheres with potassium ferrate and cyanogen chloride and carbonizing at 800 °C and were later used as electrode materials for supercapacitors. Compared with the other microspheres, LMS-F3@Fe3C has the highest specific surface area (1041.42 m2 g-1), the smallest pore size (2.36 nm) and the largest degree of graphitization (ID/IG = 1.06). At a current density of 1 A g-1, the maximum specific capacitance is 786.7 F g-1. At a power density of 1000 W kg-1, the high energy density of 83.3 Wh kg-1 is displayed. This work provides a novel approach to the modulation of surface morphology and structure of lignin microspheres.
Collapse
Affiliation(s)
- Bo Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaohan Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghui Zhou
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengzhi Tan
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Jingyu Xu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|