1
|
Chen M, Ma W, Yao S, Wan B, He Z, Kong X, Li D, Liu D, Xu E. Morphological modulation of starch chains from nanorod to nanospindle via temperature-controlling rearrangement. Int J Biol Macromol 2025; 288:138670. [PMID: 39675614 DOI: 10.1016/j.ijbiomac.2024.138670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Polymorphic nanoparticles, including starch nanoparticles (SNPs), have increasingly attracted attention, particularly rod-shaped variants, which are used for constructing anisotropic systems. Compared to symmetrically spherical particles, they show superior properties such as gastrointestinal retention for functional nutrients/drugs delivery and mechanical enhancement of filled materials, but their controlled fabrication remains a challenge. In this study, we yielded polymorphic SNPs with nearly axisymmetric geometries through a combined alkaline hydrolysis and nanoprecipitation method, followed by temperature-controlling rearrangement. The change from starch nanorod (SNR) to starch nanoellipsoid (SNE) and starch nanospindle (SNSP) was obtained when heat-induced rearrangement of starch chains occurred from temperature 90 °C to 20 °C. Interestingly, the sodium ions introduced by NaOH solution could be separated from the samples to varying extents. Both raw materials of normal and high-amylose starches have the above rules of nano-morphological alternation and salting out phenomenon, whereas their microstructures are not totally the same. Compared to SNR/SNE/SNSP fabricated from normal starch, those from high-amylose starch have a higher proportion of long chains (DP > 24) while less short chains (DP 6-12), with higher degrees of order and crystallinity.
Collapse
Affiliation(s)
- Minxuan Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Wen Ma
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Siyu Yao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Beijia Wan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zirui He
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangli Kong
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|
2
|
Mojo-Quisani A, Licona-Pacco K, Choque-Quispe D, Calla-Florez M, Ligarda-Samanez CA, Pumacahua-Ramos A, Huamaní-Meléndez VJ. Characterization of Nano- and Microstructures of Native Potato Starch as Affected by Physical, Chemical, and Biological Treatments. Foods 2024; 13:2001. [PMID: 38998507 PMCID: PMC11240970 DOI: 10.3390/foods13132001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Modifying starch allows for improvements in its properties to enable improved uses in food matrices, bioplastics, and encapsulating agents. In this research, four varieties of native potato starch were modified by acid treatment, enzymatic treatment, and ethanol precipitation, and their physicochemical, structural, thermal, and techno-functional characteristics were analyzed. According to FT-IR analysis, no influence of the modified starches on the chemical groups was observed, and by scanning electron microscopy (SEM), spherical and oval shapes were observed in the acid and enzymatic treatments, with particle sizes between 27 and 36 μm. In particular, the ethanolic precipitation treatment yielded a different morphology with a particle size between 10.9 and 476.3 nm, resulting in a significant decrease in gelatinization temperature (DSC) and more pronounced crystallites (XRD). On the other hand, the enzymatic treatment showed higher values for z-potential (ζ), and the acid treatment showed lower mass loss (TGA). Acid and ethanolic treatments affected the dough properties compared to native starches. The techno-functional properties showed a decrease in the water absorption index, an increase in the water solubility index, and varied swelling power behaviors. In conclusion, the modification of potato starches through acid, enzymatic, and ethanolic precipitation treatments alters their physicochemical properties, such as swelling capacity, viscosity, and thermal stability. This in turn affects their molecular structure, modifying morphology and the ability to form gels, which expands their applications in the food industry to improve textures, stabilize emulsions, and thicken products. Furthermore, these modifications also open new opportunities for the development of bioplastics by improving the biodegradability and mechanical properties of starch-based plastic materials.
Collapse
Affiliation(s)
- Antonieta Mojo-Quisani
- Agroindustrial Engineering, National University of San Antonio Abad del Cusco, Cusco 08000, Peru
| | - Katiuska Licona-Pacco
- Agroindustrial Engineering, National University of San Antonio Abad del Cusco, Cusco 08000, Peru
| | - David Choque-Quispe
- Agroindustrial Engineering, José María Arguedas National University, Andahuaylas 03701, Peru
| | - Miriam Calla-Florez
- Agroindustrial Engineering, National University of San Antonio Abad del Cusco, Cusco 08000, Peru
| | | | - Augusto Pumacahua-Ramos
- Department of Food Engineering, Universidad Nacional Intercultural de Quillabamba, Cusco 08741, Peru
| | - Víctor J Huamaní-Meléndez
- Department of Food Engineering and Technology, São Paulo State University (UNESP), Campus of São José do Rio Preto, São Paulo 15385-000, Brazil
| |
Collapse
|
3
|
Sun C, Hu Y, Zhu Z, He Z, Mei L, Wang C, Xie Q, Chen X, Du X. Starch nanoparticles with predictable size prepared by alternate treatments of ball milling and ultrasonication. Int J Biol Macromol 2024; 272:132862. [PMID: 38838880 DOI: 10.1016/j.ijbiomac.2024.132862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
In this study, starch nanoparticles (SNPs) were prepared by alternate treatments of liquid nitrogen ball milling and ultrasonication. The impact, shear and friction forces produced by ball milling, and acoustic cavitation and shear effects generated by ultrasonication disrupted starch granules to prepare SNPs. The SNPs possessed narrow particle size distribution (46.91-210.52 nm) and low polydispersity index (0.28-0.45). Additionally, the SNPs exhibited the irregular fragments with good uniformity. The relative crystallinity decreased from 34.91 % (waxy corn starch, WCS) to 0-25.91 % (SNPs), and the absorbance ratios of R1047/1022 decreased from 0.81 (WCS) to 0.60-0.76 (SNPs). The SNPs had lower thermal stability than that of WCS, characterized by a decrease in Td (temperature at maximum weight loss) from 309.39 °C (WCS) to 300.39-305.75 °C (SNPs). Furthermore, the SNPs exhibited excellent swelling power (3.48-28.02 %) and solubility (0.34-0.97 g/g). Notably, oil absorption capacity of the SNPs (9.77-15.67 g/g) was rather greater than that of WCS (1.33 g/g). Furthermore, the SNPs possessed the lower storage modulus (G'), loss modulus (G″) and viscosity than that of WCS. The SNPs with predictable size and high dispersion capability prepared in this study lay a foundation for expanding the application of SNPs.
Collapse
Affiliation(s)
- Chengyi Sun
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yuqing Hu
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhijie Zhu
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaoxian He
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Liping Mei
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Caihong Wang
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qingling Xie
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xu Chen
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Xianfeng Du
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
4
|
Zhu Y, Du C, Jiang F, Hu W, Yu X, Du SK. Pickering emulsions stabilized by starch nanocrystals prepared from various crystalline starches by ultrasonic assisted acetic acid: Stability and delivery of curcumin. Int J Biol Macromol 2024; 267:131217. [PMID: 38552683 DOI: 10.1016/j.ijbiomac.2024.131217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Ultrasonic assisted acetic acid hydrolysis was applied to prepare starch nanocrystals (SNCs) from native starches with different crystalline structures (A, B, and C types). The structure properties, morphology, Pickering emulsion stability and curcumin deliver capacity of both SNCs and native starches were investigated and compared. Compared with native starches, SNCs showed smaller size and higher crystallinity. The size of SNCs varied with different crystalline types, with C-type starch exhibiting the smallest SNCs (107.4 nm), followed by A-type (113.8 nm), and B-type displaying the largest particle size (149.0 nm). SNCs-Pickering emulsion showed enhanced stability with smaller emulsion droplets, higher static stability, and denser oil/water interface. SNCs-Pickering emulsions displayed higher curcumin loading efficiency (53.53 %-61.41 %) compared with native starch-Pickering emulsions (13.93 %-19.73 %). During in vitro digestion, SNCs-Pickering emulsions proved to be more proficient in protecting and prolonging the biological activity of curcumin due to their smaller size and better interfacial properties. These findings demonstrated the potential of SNCs for application in Pickering emulsion and delivery of bioactive components.
Collapse
Affiliation(s)
- Yulian Zhu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Chunwei Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fan Jiang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wenxuan Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling, Shaanxi 712100, China
| | - Shuang-Kui Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Bist Y, Sharanagat VS, Saxena DC. Synthesis, optimization, and characterization of precipitation derived starch nanoparticles from guinea seeds. Int J Biol Macromol 2024; 265:131010. [PMID: 38513900 DOI: 10.1016/j.ijbiomac.2024.131010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Guinea starch nanoparticles (GS-SNP) were developed using ultrasound and nanoprecipitation techniques. The physicochemical, thermal, structural, morphological, pasting, and rheological properties of GS-SNP were examined and compared with native starch. The particle size of GS-SNP was 391.50-206.00 nm, with a PDI of 0.35-0.23 and a zeta potential of -37.5 to -13 mV. The amylose content of GS-SNP increased with a decrease in relative crystallinity, and a VH-type crystalline structure was observed. The GS-SNP were in round shape with some self-aggregated granules. The water and oil absorption capacity, solubility, and gelatinization temperature of GS-SNP increased, but the swelling power was restricted. The viscosity of the GS-SNP dispersion remained almost constant throughout the heating but slightly increased after cooling. A higher degree of shear thinning was observed due to a fluid-like gel network and weak gel structure. The optimum conditions were: 50 % amplitude, 30 min time, and a starch to ethanol ratio (1:4) with 85 % maximum desirability. Overall, the findings suggest that GS-SNP have promising potential for application in a liquid system where viscosity of the system cannot be significantly influenced by temperature.
Collapse
Affiliation(s)
- Yograj Bist
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab, India
| | - Vijay Singh Sharanagat
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - D C Saxena
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Punjab, India.
| |
Collapse
|
6
|
Xu F, Shi Y, Li B, Liu C, Zhang Y, Zhong J. Characterization, Stability and Antioxidant Activity of Vanilla Nano-Emulsion and Its Complex Essential Oil. Foods 2024; 13:801. [PMID: 38472915 DOI: 10.3390/foods13050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
As a natural flavoring agent, vanilla essential oil has a special aroma and flavor, but its volatility and instability limit its value. Therefore, in this study, vanilla essential oil was compounded with cinnamon essential oil to prepare nano-emulsions (composite nano-emulsions called C/VT and C/VM), and the stability of the composite essential oil emulsions was investigated. Transmission electron microscopy (TEM) images showed that the nano-emulsions were spherical in shape and some flocs were observed in C/VM and C/VT. The results showed that the average droplet sizes of C/VM and C/VT increased only by 14.99% and 15.01% after heating at 100 °C for 20 min, and the average droplet sizes were less than 120 nm after 24 days of storage at 25 °C. Possibly due to the presence of reticulated flocs, which have a hindering effect on the movement of individual droplets, the instability indices of C/VM and C/VT were reduced by 34.9% and 39.08%, respectively, in comparison to the instability indices of C/VM and C/VT. In addition, the results of antioxidant experimental studies showed that the presence of composite essential oil flocs had no significant effect on the antioxidant capacity. These results indicate that the improved stability of the composite essential oil nano-emulsions is conducive to broadening the application of vanilla essential oil emulsions.
Collapse
Affiliation(s)
- Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Yucong Shi
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang 330047, China
| | - Bin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang 330047, China
| | - Yanjun Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning 571533, China
| | - Junzhen Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, No 235, Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
7
|
Wang N, Zhang C, Li H, Zhang D, Wu J, Li Y, Yang L, Zhang N, Wang X. Addition of Canna edulis starch and starch nanoparticles to stabilized Pickering emulsions: In vitro digestion and fecal fermentation. Int J Biol Macromol 2024; 258:128993. [PMID: 38163505 DOI: 10.1016/j.ijbiomac.2023.128993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Starch nanoparticles (SNPs) were prepared through acid hydrolysis of Canna edulis native starch and modified with octenyl succinic anhydride (OSA) to yield OS-starch and OS-SNPs. These modified particles were used to stabilize curcumin-loaded Pickering emulsions. Effects on gut microbiota during in vitro fecal fermentation were examined. The surface of OS-starch exhibits a porous structure, while OS-SNPs display layered grooves. OSA modification was confirmed by Fourier transform infrared spectroscopy (with peaks at 1728 cm-1 and 1573 cm-1) and proton nuclear magnetic resonance spectra (0.5-2 ppm). The degree of substitution for OS-starch and OS-SNPs is 0.0106 ± 0.0004 and 0.0079 ± 0.0003, respectively. Following modification, the crystallinity decreased from 35.69 ± 0.46 % (native starch) to 30.17 ± 0.70 % (OS-starch), SNPs decreased from 45.87 ± 0.89 % to 43.63 ± 0.64 % (OS-SNPs). Contact angles for OS-starch and OS-SNPs are 77.47 ± 1.78 and 55.57 ± 0.21, respectively. OS-SNPs exhibited superior emulsification properties compared to OS-starch, forming stable Pickering emulsions with pseudoplastic fluid behavior and enhanced curcumin storage protection over 14 days (60.88 ± 4.26 %) with controlled release. Stabilizing Pickering emulsions with OS-starch and OS-SNPs positively affected on gut microbiota and improved the intestinal environment, showing promise for their application in transportation systems and innovative prebiotic food formulations.
Collapse
Affiliation(s)
- Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Houxier Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Dachuan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Yan Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Li Yang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|