1
|
Li Q, Zhang S, Xu Y, Guo Y, Liu Y. Constructing Polymetallic Nodes in Metal-Organic Frameworks Enhance Antibacterial of Drug-Resistant Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501327. [PMID: 40285557 DOI: 10.1002/advs.202501327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/30/2025] [Indexed: 04/29/2025]
Abstract
The misuse of antibiotics results in the emergence of a large number of drug-resistant bacteria, which leads to huge financial and social burdens. Exploring artificial nanozymes is regarded as a promising candidates for the substitution of antibiotics, but still remain a huge challenge. Herein, a new strategy is reported for constructing polymetallic indium coordination node Metal-organic frameworks (MOFs) (polyIn-BTB) for enhancing the production of reactive oxygen species (ROS), which significantly promote antibacterial activity. Theoretical research reveals that, compared to monometallic indium coordination node MOFs (monoIn-BTB), polyIn-BTB exhibits a stronger electron-donating ability, which can facilitate the efficient production of ROS. Thus, polyIn-BTB shows outstanding antibacterial properties of 87.0% and 92.0% for Methicillin-Resistant Staphylococcus aureus (MRS. aureus) and Escherichia coli (E. coli) respectively, which is significantly higher than that of monoIn-BTB (42% for MRS. Aureus and 50% for E. coli). The in vivo experiments demonstrate that polyIn-BTB accelerates wound healing by killing bacteria and inhibiting the inflammatory response they cause, with a wound healing rate of 98.0% in 8 days. Overall, this work reports a new strategy for constructing polyIn-BTB for enhancing the antibacterial performance, which opens the door to fundamental research on designing the nanozyme with high performance.
Collapse
Affiliation(s)
- Qinqin Li
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shihan Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yachao Xu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Youxing Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Guo J, Wu J, Yang J, He J. A colorimetric and electrochemical dual-mode system for identifying and detecting varied Cr species based on fungus-like porous CoS nanosensor. Talanta 2025; 285:127379. [PMID: 39681056 DOI: 10.1016/j.talanta.2024.127379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/24/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
The differentiation of valence states plays a crucial role in determining the toxicity of chromium (Cr) in environmental samples. In this work, two modes of colorimetric and electrochemical analytical methods based on a fungus like porous CoS (FP CoS) nanosensor were developed for rapid, specific, and portable detection trace/ultra-trace chromium species (Cr(VI) and Cr(III)). The FP CoS exhibited peroxidase activity as a nanozyme for the colorimetric detection of Cr(VI), catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to a blue oxidation product (oxTMB) in the presence of Cr(VI) instead of unstable H2O2 as an oxidizer at room temperature over existing methods. Based on the promotion of colorimetric reaction by increasing in Cr(VI) concentration, an effective colorimetric detection of Cr(VI) method was established with a detection limit (LOD) low to 3.93 μg L-1 and unique selectivity for Cr(VI) over 21 interfering ions (containing 15 metal ions and 6 anions). Innovatively, Cr(VI) could be reduced to Cr(III) without TMB, then selectively enriched by redox reaction with FP CoS. Hence, Cr (III) can be selectively and effectively enriched by FP CoS applying voltage, and then detected using cyclic voltammetry, with a lower LOD of 0.116 μg L-1 and high sensitivity ignoring background interferences. By integrating the dual-mode detection channel, the FP CoS nanosensor offers a convenient and flexible method for simultaneously determining Cr(VI), Cr(III), and total chromium in diverse samples.
Collapse
Affiliation(s)
- Jianrong Guo
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Juan Wu
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
3
|
Ascioglu S, Ozyilmaz E, Yildirim A, Sayin S, Yilmaz M. Preparation of two new chiral metal-organic frameworks for lipase immobilization and their use as biocatalysis in the enantioselective hydrolysis of racemic naproxen methyl ester. Int J Biol Macromol 2024; 282:136946. [PMID: 39490851 DOI: 10.1016/j.ijbiomac.2024.136946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/02/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Considering the selective pharmacological activity of chiral drugs, it is important to develop new chiral materials to synthesize them. In this work, two new chiral MOFs (UiO-66@Np and UiO-66@Ib) were prepared by the covalent attachment of the chiral compounds (S-naproxen and S-ibuprofen) to the amine-functionalized Zr-MOF (UiO-66-NH2). Then, Candida rugosa lipase (CRL) was immobilized on these chiral MOFs to fabricate two new biocomposites (UiO-66@Np@CRL and UiO-66@Ib@CRL) as effective biocatalysts, which enable significant enhancement in the catalytic activity and enantioselectivity of lipase. The FTIR, SEM, EDX, TGA, and PXRD analyses were carried out to confirm the formation of the biocomposites. The catalytic performances of the biocomposites (UiO-66@Np@CRL and UiO-66@Ib@CRL) were evaluated in the typical hydrolysis of p-nitro-phenyl palmitate (p-NPP) and the catalytic enantioselective hydrolysis of (R,S)-naproxen methyl ester. Under optimal conditions, UiO-66@Np@CRL showed a higher enantiomeric excess of the substrate (ees) value and a 98 % and 50 % conversion rate, respectively, than that of UiO-66@Ib@CRL. Besides, an excellent enantioselectivity (E) value of 458 was obtained in the presence of the biocomposite (UiO-66@Np@CRL). In addition, it was observed that the catalytic activity, conversion rate and ees value of this composite (UiO-66@Np@CRL) remained almost unchanged in reuse after 6 months. The results showed that in enantioselective reactions, the highest conversion and enantioselectivity could be achieved when the chiral compound bound to the MOF and the model compound used are the same.
Collapse
Affiliation(s)
- Sebahat Ascioglu
- Department of Biochemistry, Selcuk University, 42075 Konya, Turkey
| | - Elif Ozyilmaz
- Department of Biochemistry, Selcuk University, 42075 Konya, Turkey
| | - Ayse Yildirim
- Department of Chemistry, Selcuk University, 42075 Konya, Turkey
| | - Serkan Sayin
- Department of Environmental Engineering, Giresun University, 28200 Giresun, Turkey
| | - Mustafa Yilmaz
- Department of Chemistry, Selcuk University, 42075 Konya, Turkey.
| |
Collapse
|
4
|
Lu Y, Sui L, Dai C, Zheng W, Zhao Y, Li Q, Liang X, Li Q, Zhang Z. Immobilization of Bacillus thuringiensis Cry1Ac in metal-organic frameworks through biomimetic mineralization for sustainable pest management. Int J Biol Macromol 2024; 274:133388. [PMID: 38925193 DOI: 10.1016/j.ijbiomac.2024.133388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Traditional chemical pesticide dosage forms and crude application methods have resulted in low pesticide utilization, increased environmental pollution, and the development of resistance. Compared to traditional pesticides, nanopesticides enhance the efficiency of pesticide utilization and reduce the quantity required, thereby decreasing environmental pollution. Herein, Cry1Ac insecticidal crystal protein from Bacillus thuringiensis Subsp. Kurstaki HD-73 was encapsulated in a metal-organic framework (zeolite imidazolate framework-8, ZIF-8) through biomimetic mineralization to obtain Cry1Ac@ZIF-8 nanopesticides. The Cry1Ac@ZIF-8 nanopesticides exhibited a dodecahedral porous structure, and the introduction of Cry1Ac did not affect the intrinsic crystal structure of ZIF-8. The indoor toxicity analysis revealed that the toxicity of Cry1Ac towards Ostrinia furnacalis (Guenée), Helicoverpa armigera Hubner, and Spodoptera litura Fabricius was not affected by ZIF-8 encapsulation. Surprisingly, Cry1Ac@ZIF-8 still exhibited excellent pest management efficacy even after exposure to heat, UV irradiation, and long-term storage. More importantly, the encapsulation of ZIF-8 significantly enhanced the internal absorption performance of Cry1Ac in maize leaves and extended its persistence period. Thus, ZIF-8 could potentially serve as a promising carrier for the preparation of nanopesticides with enhanced applicability, stability, and persistence period, providing a powerful strategy to improve the application of Cry1Ac in future agricultural pest management.
Collapse
Affiliation(s)
- Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China
| | - Chunyan Dai
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun 130000, China
| | - Wenjing Zheng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China; Jilin Agricultural Science and Technology University, Jilin 132109, China.
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China.
| |
Collapse
|
5
|
Yildirim A, Bhatti AA, Uysal A, Yilmaz M. Dual fluorescence response of calix[4]arene-1,8-naphthalimide derivatives towards Hg(II) /Cr(VI) and their antimicrobial studies of transparent biofilms with hyaluronic acid. Int J Biol Macromol 2024; 273:132955. [PMID: 38852733 DOI: 10.1016/j.ijbiomac.2024.132955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
In this study, 4-sulfo-1,8-naphthalimide calixarene of derivatives were prepared (3 and 4) then transparent biofilms of the Ag salts of these compounds were formed in the presence of hyaluronic acid (HA), and antimicrobial properties were investigated. In chemosensor studies, the sensing ability behavior of 3 and 4 towards some cations and anions was investigated by fluorescence spectroscopy. It was observed that the prepared chemosensors show selectivity towards Hg(II) and Cr(VI). Ligand-ion interaction occurs according to the photo-induced electron transfer (PET) mechanism. The stoichiometric ratio was calculated by using Stern-Volmer plot method and binding constant Ksv values were found as 5.2 × 107 M-1 and 5.5 × 107 M-1 for 3-Hg(II) and 4-Hg(II) complexes, respectively and 4.0 × 107 M-1 and 4.3 × 107 M-1 for 3-Cr(VI) and 4-Cr(VI) complexes. The detection limits of the complexes of 3-Hg(II) and 4-Hg(II) are 6.35 × 10-12and 6.81 × 10-12, while those of 3-Cr(VI) and 4-Cr(VI) are 1.41 × 10- 11and 8.37 × 10-12, respectively. As a result of the antimicrobial test performed with these compounds, it was observed that the most effective material was HA-3Ag, which showed a significant antibacterial effect against Sarcina lutea (S. lutea) at a minimum inhibitory concentration (MIC) value of 0.097 mg/mL.
Collapse
Affiliation(s)
- Ayse Yildirim
- Selcuk University, Department of Chemistry, 42031 Konya, Turkey
| | - Asif Ali Bhatti
- Department of Chemistry, Government College University Hyderabad, Hyderabad 71000, Pakistan
| | - Ahmet Uysal
- Selcuk University, Vocational School of Health Services, Department of Medical Services and Techniques, Konya, Turkey
| | - Mustafa Yilmaz
- Selcuk University, Department of Chemistry, 42031 Konya, Turkey.
| |
Collapse
|
6
|
Gan M, Wang Y, Wang F, Tan J, Pei Y, Wang J, Choi MMF, Bian W. Fluorescent sensing platform based on polyethyleneimine-protected copper nanoclusters for detection of chromium(VI) in real samples. LUMINESCENCE 2024; 39:e4689. [PMID: 38361140 DOI: 10.1002/bio.4689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/27/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
A new type of polyethyleneimine-protected copper nanoclusters (PEI-CuNCs) is favorably developed by a one-pot method under mild conditions. The obtained PEI-CuNCs is characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, Fourier-transform infrared (FTIR) spectroscopy and other techniques. It is worth noting that the proposed PEI-CuNCs demonstrate a selective response to chromium(VI) over other competitive species. Fluorescence quenching of PEI-CuNCs is determined to be chromium(VI) concentrations dependence with a low limit of detection of 8.9 nM. What is more, the as-developed PEI-CuNCs is further employed in building a detection platform for portable recognition of chromium(VI) in real samples with good accuracy. These findings may offer a distinctive strategy for the development of methods for analyzing and monitoring chromium(VI) and expand their application in real sample monitoring.
Collapse
Affiliation(s)
- Mingyu Gan
- Department of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Yingqi Wang
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Fei Wang
- Gastroenterology, Lvliang People's Hospital, Lvliang, China
| | - Jie Tan
- Department of Traditional Chinese Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuheng Pei
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianhua Wang
- Department of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Martin M F Choi
- Bristol Chinese Christian Church, c/o Tyndale Baptist Church, Bristol, UK
| | - Wei Bian
- Department of Basic Medicine, Shanxi Medical University, Taiyuan, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Yildirim A, Ascioglu S, Kocer MB, Ozyilmaz E, Yilmaz M. Design of a novel fluorescent metal-organic framework (UiO-66-NG) for the detection of boric acid in aqueous medium and bioimaging in a living plant system. Talanta 2024; 268:125285. [PMID: 37832455 DOI: 10.1016/j.talanta.2023.125285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
UiO-66-NH2 material is a variant of Zr-based MOF most widely used for various applications, exhibiting unprecedented excellent hydrothermal and physicochemical stability. In this study, after UiO-66-NH2 reacted with chlorosulfonyl isocyanate, the fluorescent UiO-66-NG probe was prepared by interacting with the N-methylglucamine molecule. The structure of the prepared probe was confirmed by characterizing them with techniques such as FTIR, SEM, and XRD. The sensing properties of this prepared probe against different anions and cations were investigated and it was understood that it showed sensitive selectivity only for H3BO3. The H3BO3 detection limit (LOD) of the UiO-66-NG probe was determined as 1.81 μM. Boric acid was determined in real samples by using tap water, lake water, and river water. Fluorescence imaging was performed using the plant Lepidium sativum for the detection of boric acid in aqueous medium and for bio-imaging in a living plant system. These results show that the prepared UiO-66-NG can be used successfully in the determination of H3BO3 in living plants.
Collapse
Affiliation(s)
- Ayse Yildirim
- Selcuk University, Department of Chemistry, 42075, Konya, Turkey.
| | - Sebahat Ascioglu
- Selcuk University, Department of Biochemistry, 42075, Konya, Turkey
| | | | - Elif Ozyilmaz
- Selcuk University, Department of Biochemistry, 42075, Konya, Turkey
| | - Mustafa Yilmaz
- Selcuk University, Department of Chemistry, 42075, Konya, Turkey.
| |
Collapse
|