1
|
Zhang X, Li G, Chen C, Fan H, Fang J, Wu X, Qi J, Li H. Chitosan/PVA composite film enhanced by ZnO/lignin with high-strength and antibacterial properties for food packaging. Int J Biol Macromol 2025; 306:141658. [PMID: 40032089 DOI: 10.1016/j.ijbiomac.2025.141658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
This study aims to develop a chitosan/polyvinyl alcohol (CS/PVA) composite film (QZCS/PVA) for food packaging, enhanced by the incorporation of quaternary ammonium lignin/ZnO nanoparticles (QAL/ZnO) to improve its antibacterial, antioxidant, and mechanical properties. The QAL/ZnO nanoparticles were synthesized using a co-precipitation method, resulting in a synergistic effect that enhances the uniformity and stability of the composite film. The double cross-linked CS/PVA composite film containing QAL/ZnO nanoparticles effectively mitigates the brittleness of pure chitosan films, achieving a tensile strength of 95.89 MPa. Crucially, the inclusion of QAL/ZnO imparts exceptional antioxidant and antibacterial properties to the QZCS/PVA composite film. Disk diffusion assays revealed markedly enhanced antibacterial efficacy against Staphylococcus aureus and Escherichia coli in comparison to analogous biopolymer films. The dense network structure of the composite film also provides excellent water resistance, which contributes to extending the shelf life of food products. In a 12-day grape preservation experiment, the composite film exhibited outstanding preservation performance. These results underscore the potential of the CS/PVA composite film containing lignin and chitosan for food packaging applications, offering significant advantages in improving food preservation.
Collapse
Affiliation(s)
- Xinxin Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Gang Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Chen Chen
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hongxian Fan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Jing Fang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xingjiang Wu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Junjie Qi
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
2
|
Wang F, Zhao W, Lv W, Li P, Tian M, Xu S, Li L, Wang R, Liu F, Chen Y, Feng X. Identification and Functional Characterization of a Novel Sinapyl Alcohol Acyltransferase from Euphorbia lathyris L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20187-20197. [PMID: 38044624 DOI: 10.1021/acs.jafc.3c07127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Methoxyeugenol is a phenylpropene compound derived from plants and has various bioactivities. The chemical synthesis of methoxyeugenol is accompanied by pollution issues, whereas extraction from plants is associated with problems such as low yield and high cost. The production of methoxyeugenol can be effectively addressed through an enzymatic approach. In this study, the acyltransferase genes of Euphorbia lathyris L. were screened by homologous alignment of the transcriptome data of E. lathyris in the late growth stage and the acyltransferase genes of the closely related plant species. The results showed that ElBAHD10 had the closest relationship with earlier reported ScCFAT and PhCFAT, which were found to catalyze the reaction of coniferyl alcohol to generate coniferyl acetate. The ElBAHD10 gene was successfully cloned from E. lathyris and subsequently expressed in Escherichia coli. The purified protein ElBAHD10 catalyzed the reaction of sinapyl alcohol with acetyl CoA and cinnamoyl CoA to form sinapyl acetate and sinapyl cinnamate, respectively. In contrast, the crude ElBAHD10 protein could catalyze sinapyl alcohol to directly generate methoxyeugenol. The recombinant E. coli strain expressing ElBAHD10 produced methoxyeugenol through whole-cell transformation. This study provides insights and lays the foundation for methoxyeugenol production through biosynthetic approaches.
Collapse
Affiliation(s)
- Fan Wang
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Wanli Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Wei Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Pirui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Mei Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Linwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ruiyang Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Fei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xu Feng
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|