1
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Georgatos-Garcia S, Touriki G, Dragosloveanu CDM, Caruntu A, Savulescu-Fiedler I, Dragosloveanu S, Scheau AE, Badarau IA, Caruntu C, Scheau C. Pinosylvin: A Multifunctional Stilbenoid with Antimicrobial, Antioxidant, and Anti-Inflammatory Potential. Curr Issues Mol Biol 2025; 47:204. [PMID: 40136458 PMCID: PMC11941527 DOI: 10.3390/cimb47030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Stilbenoids are a category of plant compounds exhibiting notable health-related benefits. After resveratrol, perhaps the most well-known stilbenoid is pinosylvin, a major phytochemical constituent of most plants characterised by the pine spines among others. Pinosylvin and its derivatives have been found to exert potent antibacterial and antifungal effects, while their antiparasitic and antiviral properties are still a subject of ongoing research. The antioxidant properties of pinosylvin are mostly based on its scavenging of free radicals, inhibition of iNOS and protein kinase C, and promotion of HO-1 expression. Its anti-inflammatory properties are based on a variety of mechanisms, such as COX-2 inhibition, NF-κB and TRPA1 activation inhibition, and reduction in IL-6 levels. Its anticancer properties are partly associated with its antioxidant and anti-inflammatory potential, although a number of other mechanisms are described, such as apoptosis induction and matrix metalloproteinase inhibition. A couple of experiments have also suggested a neuroprotective potential. A multitude of ethnomedical and ethnobotanical effects of pinosylvin-containing plants are reported, like antimicrobial, antioxidant, anti-inflammatory, hepatoprotective, and prokinetic actions; many of these are corroborated by recent research. The advent of novel methods of artificial pinosylvin synthesis may facilitate its mass production and adoption as a medical compound. Finally, pinosylvin may be a tool in promoting environmentally friendly pesticide and insecticide policies and be used in land remediation schemes.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Georgia Touriki
- Faculty of Law, Democritus University of Thrace, 69100 Komotini, Greece
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
2
|
Zhu Y, Zhang L, Wang Z, Li T, Chen Y, Lu L, Liu H, Kong D, Peng Y, Chen X, Hu C, Chen H, Guo A. Circular RNA ZNF277 Sponges miR-378d to Inhibit the Intracellular Survival of Mycobacterium tuberculosis by Upregulating Rab10. Cells 2025; 14:262. [PMID: 39996735 PMCID: PMC11853707 DOI: 10.3390/cells14040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Circular RNAs (circRNAs) are covalently closed non-coding RNAs formed by back-splicing, lacking a 5' cap and poly-A tail. They could act as important regulatory factors in the host's anti-tuberculosis immune process, but only a few have been identified, and their molecular mechanisms remain largely unclear. Here, we identified a novel circRNA, circ-ZNF277, which responds to Mycobacterium tuberculosis (Mtb) infection in THP-1 cells. Circ-ZNF277 binds microRNA-378d (miR-378d) in vivo. The expression level of circ-ZNF277 affects the clearance of the intracellular Mtb in THP-1 cells. Mechanistically, more circ-ZNF277 molecules could absorb more miR-378d, thereby competitively activating the NF-κB signaling pathway, promoting the release of pro-inflammatory cytokines including interleukins IL-1β and IL-6, and tumor necrosis factor-α (TNF-α), and inhibiting the survival of intracellular Mtb. Expressing miR-378d or si-Rab10 targeting the transcription of Rab10 could antagonize the effects of overexpression of circ-ZNF277, resulting in the reduced intracellular survival of Mtb. In summary, circ-ZNF277 inhibits the intracellular survival of Mtb via the miR-378d/Rab10 axis. This finding represents a novel mechanism of circular RNA in regulating host immune responses during Mtb infection.
Collapse
Affiliation(s)
- Yifan Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zijian Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Lu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Delai Kong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongchong Peng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (X.C.)
- National Professional Laboratory for Animal Tuberculosis (Wuhan), Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Wang B, Lin C, Duan C, Li J, Chen H, Xu J, Zeng J, Gao W, Wei W. Physicochemical characterization of bioactive polysaccharides from three seaweed and application of functional fruit packaging films. Int J Biol Macromol 2024; 282:136765. [PMID: 39442836 DOI: 10.1016/j.ijbiomac.2024.136765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/20/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Seaweed polysaccharides show tremendous research and application value because of their significant and unique biological activities. However, reports on seaweed polysaccharides usually focus on in-depth studies of a specific biological activity, which severely limits their further development. Herein, three seaweed polysaccharides were isolated from Undaria pinnatifida (UPPS), Sargassum pallidum (SPPS), and Ulva lactuca (ULPS), respectively. The physicochemical properties, structure, rheological properties, antioxidant activities, antibacterial activities, and anti-glycation activities of UPPS, ULPS, and SPPS were comprehensively studied. It was first demonstrated that SPPS and UPPS had triple prominent biological activities. SPPS exhibited the best biological activities in antioxidation (IC50 in the ABTS test: 0.4616 ± 0.0134 mg/mL), antibacterial effect, and anti-glycation activity (inhibitory rate: 84.74 ± 0.07 %). Additionally, UPPS films (UPPSF) demonstrated superior ultraviolet shielding performance, lower water vapor permeability (1.78 ± 0.01 g/m·s·Pa × 10-11), higher hydrophobicity (water contact angle: 96.91 ± 2.52°), and higher antioxidant activity compared to ULPS films (ULPSF). UPPSF and ULPSF effectively prolonged the shelf life of strawberries to six days, and UPPSF showed better preservation properties. This work provides novel theoretical insights into the use of polysaccharides as medicinal nutraceuticals, bioactive agents, and food packaging films.
Collapse
Affiliation(s)
- Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Changhui Lin
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chengliang Duan
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haoying Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenguang Wei
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying 257335, China.
| |
Collapse
|
4
|
Su W, Chen J, Zhang Y, Luo X, Lin C, Li P. Chitosan/agarose hydrogel dressing: pH response real-time monitoring and chemo-/photodynamic therapy synergistic treatment of infected wounds. Int J Biol Macromol 2024; 277:134513. [PMID: 39111468 DOI: 10.1016/j.ijbiomac.2024.134513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/28/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
The early diagnosis and real-time monitoring of bacterial infections are of great significance for the establishment of integrated diagnosis and treatment systems. In this study, a pH-responsive smart hydrogel patch system, named CABP, was developed to monitor and treat wound infections. CABP has a sandwich structure, with non-woven fabric/chitosan (NF/CS) as the intermediate skeleton layer, Agarose/chitosan/Bromothymol Blue (AG/CS/BTB) hydrogel as the detection layer, and Agarose/chitosan/phthalocyanine (AG/CS/Pc) hydrogel as the treatment layer. When Staphylococcus aureus (S. aureus) infection occurs, the pH of the environment decreases, which triggers the CABP to change from its original blue color to yellow, achieving an intuitive visual transformation. Moreover, the hydrogel patch showed a significant inhibition rate of up to 99.99971 % against S. aureus under 660 nm light radiation, showing a good photodynamic therapy (PDT)/ chemotherapy (CT) synergistic effect. In addition, CABP showed excellent antibacterial and wound healing effects on S. aureus infection in a full-layer skin defect experiment. In short, the patch system is simple to prepare and easy to use, and can provide important research value for the integrated diagnosis and treatment system in biomedical applications.
Collapse
Affiliation(s)
- Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China.
| | - Jiayin Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | - Ying Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaoyan Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | - Chenxiang Lin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, China
| | - Peiyuan Li
- Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
5
|
Liu Y, Su G, Wang W, Wei H, Dang L. A novel multifunctional SERS microfluidic sensor based on ZnO/Ag nanoflower arrays for label-free ultrasensitive detection of bacteria. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2085-2092. [PMID: 38511545 DOI: 10.1039/d4ay00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
This study proposes a microfluidic platform for rapid enrichment and ultrasensitive SERS detection of bacteria. The platform comprises ZnO nanoflower arrays decorated with silver nanoparticles to enhance the SERS sensitivity. The ZnO nanoflower array substrate with a 3D reticular columnar structure is prepared using the hydrothermal method. SEM analysis depicts the 3.05 μm gap distribution of the substrate array to intercept the most bacteria in the particle sizes range of 0.5 to 3 μm. Then, silver nanoparticles are deposited on the ZnO nano-array surface by liquid evaporation self-assembly. TEM and SEM analysis indicate nanosize of Ag particles, evenly distributed on the substrate, enhancing the SERS efficiency and improving sensing reproducibility. The probe molecules (R6G) are tested to demonstrate the high SERS activity of the proposed microfluidic sensor. Then, Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis are selected, demonstrating the sensor's excellent bacterial capture and sensitive recognition capabilities, with a detection limit as low as 102 CFU mL-1. Additionally, the antibacterial properties of ZnO/Ag heterojunction nanostructures are studied, suggesting their ability to inactivate bacteria. Compared with the traditional Au-enhanced chip, the sensor preparation is easy, safe, reliable, and low-cost. Moreover, the ZnO nano-array exhibits a large specific surface area, high interception ability, stronger and uniform SERS performance, and effective and reliable detection of trace pathogens. This work provides potential future ZnO/Ag microfluidic SERS sensor applications for rapid, unlabeled, and trace pathogens detection in clinical and environmental applications, potentially achieving breakthroughs in early detection, prevention, and treatment.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Guanwen Su
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Wei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hongyuan Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Leping Dang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Xiao Y, Cheng P, Zhu X, Xu M, Liu M, Li H, Zhang Y, Yao S. Antimicrobial Agent Functional Gold Nanocluster-Mediated Multichannel Sensor Array for Bacteria Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2369-2376. [PMID: 38230676 DOI: 10.1021/acs.langmuir.3c03612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Urinary tract infections (UTIs) have greatly affected human health in recent years. Accurate and rapid diagnosis of UTIs can enable a more effective treatment. Herein, we developed a multichannel sensor array for efficient identification of bacteria based on three antimicrobial agents (vancomycin, lysozyme, and bacitracin) functional gold nanoclusters (AuNCs). In this sensor, the fluorescence intensity of the three AuNCs was quenched to varying degrees by the bacterial species, providing a unique fingerprint for different bacteria. With this sensing platform, seven pathogenic bacteria, different concentrations of the same bacteria, and even bacterial mixtures were successfully differentiated. Furthermore, UTIs can be accurately identified with our sensors in ∼30 min with 100% classification accuracy. The proposed sensing systems offer a rapid, high-throughput, and reliable sensing platform for the diagnosis of UTIs.
Collapse
Affiliation(s)
- Yuquan Xiao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| | - Pei Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P.R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P.R. China
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| |
Collapse
|
7
|
Kachkoul R, Benjelloun Touimi G, Bennani B, El Mouhri G, El Habbani R, Zouhri A, El-Mernissi Y, Lahrichi A. Optimisation of Three Essential Oils against Salmonella spp. and Escherichia coli by Mixture Designa. Chem Biodivers 2023; 20:e202301221. [PMID: 37783668 DOI: 10.1002/cbdv.202301221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
The aim of this work is to optimise the antibacterial activity of essential oils (EOs) from Eucalyptus camaldulensis (ECEO), Mentha pulegium (MPEO) and Rosmarinus officinalis (ROEO) plants against Salmonella spp. and Escherichia coli. The qualitative antimicrobial effect was assessed using the disc diffusion method, the broth microdilution method was used to determine the minimum inhibitory concentrations (MIC). Polynomial models were created using an augmented centroid simplex mixture design to highlight the synergy of EOs. The results show a significant antibacterial effect of ECEO and MPEO against both bacterial strains, with inhibition zones (IZs) of 13 and 12 mm respectively against E. coli, and 13 and 11 mm against Salmonella spp. The latter strain showed a MIC of 0.625 % (v : v) by the ECEO, while E. coli exhibited a MIC of 0.0781 % (v : v). The binary combinations of essential oils display a synergistic effect, the proportions of the optimum EOs in the mixture giving the lowest MICm were of the order of 50.51 % ECEO and 49.49 % ROEO against Salmonella spp. and around 50 % MPEO and 50 % ECEO against E. coli. These results indicate the effectiveness of binary combinations EOs against resistant bacterial strains and suggest their importance in bacterial infections treatment.
Collapse
Affiliation(s)
- Rabie Kachkoul
- Laboratory of Biochemistry, Faculty of Medicine, Pharmacy and Dental Medicine, University Sidi Mohammed Ben Abdellah, BP, 1893, Km 22, Road of Sidi Harazem, Fez, Morocco
| | - Ghita Benjelloun Touimi
- Laboratory of Human Pathology Biomedicine and Environment, Faculty of Medicine, Pharmacy and Dental Medicine, University Sidi Mohammed Ben Abdellah, BP, 1893, Km 22, Road of Sidi Harazem, Fez, Morocco
- Euromed research center, Euromed faculty of medicine, Euromed University of Fes (UEMF), 30 030, Meknes Road, Campus UEMF, BP51, Fez, Morocco
| | - Bahia Bennani
- Laboratory of Human Pathology Biomedicine and Environment, Faculty of Medicine, Pharmacy and Dental Medicine, University Sidi Mohammed Ben Abdellah, BP, 1893, Km 22, Road of Sidi Harazem, Fez, Morocco
| | - Ghita El Mouhri
- Laboratory of Biochemistry, Faculty of Medicine, Pharmacy and Dental Medicine, University Sidi Mohammed Ben Abdellah, BP, 1893, Km 22, Road of Sidi Harazem, Fez, Morocco
| | - Radouane El Habbani
- Laboratory of Biochemistry, Faculty of Medicine, Pharmacy and Dental Medicine, University Sidi Mohammed Ben Abdellah, BP, 1893, Km 22, Road of Sidi Harazem, Fez, Morocco
| | - Aziz Zouhri
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes B.P., 11201, Morocco
| | - Yahya El-Mernissi
- Research unit in applied chemistry, Faculty of Science and Techniques, Abdelmalek Essaadi University, Al Hoceima 32003, Morocco
| | - Anissa Lahrichi
- Laboratory of Biochemistry, Faculty of Medicine, Pharmacy and Dental Medicine, University Sidi Mohammed Ben Abdellah, BP, 1893, Km 22, Road of Sidi Harazem, Fez, Morocco
| |
Collapse
|