1
|
Fan HD, Zhao YM, Liu M, Wang X, Lin J, Huang W, Wang JH. Mechanisms of immune responses in Acanthopagrus latus to Streptococcus agalactiae infection revealed by transcriptomic analysis. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110114. [PMID: 39798626 DOI: 10.1016/j.fsi.2025.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Acanthopagrus latus (yellowfin seabream) is an economically important fish in the southeast coastal sea of China. Its slower growth rate makes it more prone to diseases in the cultivation period, leading to substantial economic losses. Epidemiological investigations have indicated that Streptococcus agalactiae is one of the most common Gram-positive pathogens, which have garnered increasing attention due to its high contagion and lethality rates in A. latus. In this work, an infection model of yellowfin seabream was established with an intraperitoneal injection of S. agalactiae. Clinical sign observations and various analyses, including histological examination, serum biochemical index assessment, immune-related enzyme level measurement, and transcriptome analysis of tissues (liver and intestine) with obvious clinical signs, were conducted for revealing the effects of S. agalactiae infection and immune response mechanisms in yellowfin seabream. The results indicate that evident clinical signs and multi-tissue damages with the notable changes in indices and significant increase in immune-related enzyme levels in the serum occurred in infected fish. RNA sequencing analysis identified 1130 differentially expressed genes (DEGs) in the liver and 1218 DEGs in the intestine, which were involved in multiple immune- and metabolism-related pathways via KEGG enrichment analysis. The transcriptomic results were further corroborated by quantitative real-time RT-PCR (qRT-PCR) tests of some specific immune-related genes. These findings provide new insights into the molecular immune mechanisms in yellowfin seabream following S. agalactiae infection and offer valuable reference data for disease prevention and molecular breeding (i.e., selective breeding through developing molecular markers of key genes).
Collapse
Affiliation(s)
- Hong-Di Fan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yuan-Ming Zhao
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Min Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xu Wang
- Guangzhou Enenta Chemotech Co., Ltd, Guangzhou, 510635, China
| | - Jia Lin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Wen Huang
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
| |
Collapse
|
2
|
Pan JM, Gao J, Liu MJ, Zhu KC, Guo HY, Liu BS, Zhang N, Zhang DC. Functional Characterization of Galectin-8 from Golden Pompano Trachinotus ovatus Reveals Its Broad-Spectrum Antimicrobial Activity. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:21. [PMID: 39688731 DOI: 10.1007/s10126-024-10393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Galectins exhibit a variety of biological functions through interactions with their ligands, including galactose and its derivatives. Tandem-repeat galectins, such as Galectin-8, can act as pattern recognition receptors to aggregate and neutralize bacterial pathogens. In this study, Galectin-8 was identified in Trachinotus ovatus (golden pompano). Galectin-8 consists of two carbohydrate recognition domains (CRDs) connected by a linker region. Furthermore, molecular docking analysis suggests that the C-terminal CRD can bind galactose, mannose, and N-acetylglucosamine at similar binding sites. ToGal-8 expression levels were highest in the brain and blood of healthy T. ovatus. However, following infection with Streptococcus agalactiae, expression levels in the spleen and head kidney surged at 48 h, while liver expression significantly decreased by 96 h. Cytoplasmic Galectin-8 expression was upregulated after stimulation by peptidoglycan compared with lipopolysaccharide. Recombinant ToGal-8 (rToGal-8) was produced using a prokaryotic expression system. This protein could agglutinate red blood cells from rabbits, carp, and T. ovatus independently of Ca2+. Moreover, it was also effective in aggregating and eliminating several bacterial strains, such as Staphylococcus aureus, Bacillus subtilis, Vibrio vulnificus, S. agalactiae, Pseudomonas aeruginosa, and Aeromonas hydrophila. Therefore, this study provides an in-depth analysis of the function of T. ovatus Galectin-8 for the first time, offering guidance for the healthy aquaculture of T. ovatus.
Collapse
Affiliation(s)
- Jin-Min Pan
- Sanya Tropical Fisheriers Research Institute, Sanya, 572108, Hainan Province, China
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jie Gao
- Sanya Tropical Fisheriers Research Institute, Sanya, 572108, Hainan Province, China
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ming Jian Liu
- Sanya Tropical Fisheriers Research Institute, Sanya, 572108, Hainan Province, China
| | - Ke-Cheng Zhu
- Sanya Tropical Fisheriers Research Institute, Sanya, 572108, Hainan Province, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, SouthChina Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences., Guangzhou, 510300, 231 xingang street West, Haizhu District., Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Hua-Yang Guo
- Sanya Tropical Fisheriers Research Institute, Sanya, 572108, Hainan Province, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Bao-Suo Liu
- Sanya Tropical Fisheriers Research Institute, Sanya, 572108, Hainan Province, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, SouthChina Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences., Guangzhou, 510300, 231 xingang street West, Haizhu District., Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Nan Zhang
- Sanya Tropical Fisheriers Research Institute, Sanya, 572108, Hainan Province, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, SouthChina Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences., Guangzhou, 510300, 231 xingang street West, Haizhu District., Guangdong, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Dian-Chang Zhang
- Sanya Tropical Fisheriers Research Institute, Sanya, 572108, Hainan Province, China.
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, SouthChina Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences., Guangzhou, 510300, 231 xingang street West, Haizhu District., Guangdong, China.
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Liang J, Guo H, He H, Liu B, Zhang N, Xian L, Zhu K, Zhang D. The transcription factors HNF-4α and NF-κB activate the CDO gene to promote taurine biosynthesis in the golden pompano Trachinotus ovatus (Linnaeus 1758). Gene 2024; 928:148786. [PMID: 39047959 DOI: 10.1016/j.gene.2024.148786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Cysteine dioxygenase (CDO) is a rate-limiting enzyme in taurine biosynthesis. Taurine synthesis is limited in marine fish, and most taurine is provided by their diet. Although a nutritional study indicated that the transcription of ToCDO was significantly altered by treatment with 10.5 g/kg taurine in food, the regulatory mechanism of this biosynthesis has not been fully elucidated. In the present study, we identified the sequence features of Trachinotus ovatus cysteine dioxygenase (ToCDO), which consists of 201 amino acids. It is characterized by being a member of the cupin superfamily with two conserved cupin motifs located at amino acids 82-102 and 131-145 and with a glutamate residue substituted by a cysteine in its first motif. Moreover, phylogenetic analysis revealed that the similarity of the amino acid sequences between ToCDO and other species ranged from 84.58 % to 91.54 %. Furthermore, a high-performance liquid-phase assay of the activity of recombinantly purified ToCDO protein showed that ToCDO could catalyse the oxidation of cysteine to produce cysteine sulphite. Furthermore, the core promoter region of CDO was identified as -1182-+1 bp. Mutational analysis revealed that the HNF4α and NF-κB sites significantly and actively affected the transcription of CDO. To further investigate the binding of these two loci to the CDO promoter, an electrophoretic shift assay (EMSA) was performed to verify that HNF4α-1 and NF-κB-1 interact with the binding sites of the promoter and promote CDO gene expression, respectively. Additionally, cotransfection experiments showed that HNF4α or both HNF4α and NF-κB can significantly influence CDO promoter activity, and HNF4α was the dominant factor. Thus, HNF4α and NF-κB play important roles in CDO expression and may influence taurine biosynthesis within T. ovatus by regulating CDO expression.
Collapse
Affiliation(s)
- Junjie Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Hongxi He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| |
Collapse
|
4
|
He HX, Guo HY, Liu BS, Zhang N, Zhu KC, Zhang DC. Two IFNa3s mediate the regulation of IRF9 in the process of infection with Streptococcus iniae in yellowfin seabream, Acanthopagrus latus (Hottuyn, 1782). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105167. [PMID: 38574830 DOI: 10.1016/j.dci.2024.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
IRF9 can play an antibacterial role by regulating the type I interferon (IFN) pathway. Streptococcus iniae can cause many deaths of yellowfin seabream, Acanthopagrus latus in pond farming. Nevertheless, the regulatory mechanism of type I IFN signalling by A. latus IRF9 (AlIRF9) against S. iniae remains elucidated. In our study, AlIRF9 has a total cDNA length of 3200 bp and contains a 1311 bp ORF encoding a presumed 436 amino acids (aa). The genomic DNA sequence of AlIRF9 has nine exons and eight introns, and AlIRF9 was expressed in various tissues, containing the stomach, spleen, brain, skin, and liver, among which the highest expression was in the spleen. Moreover, AlIRF9 transcriptions in the spleen, liver, kidney, and brain were increased by S. iniae infection. By overexpression of AlIRF9, AlIRF9 is shown as a whole-cell distribution, mainly concentrated in the nucleus. Moreover, the promoter fragments of -415 to +192 bp and -311 to +196 bp were regarded as core sequences from two AlIFNa3s. The point mutation analyses verified that AlIFNa3 and AlIFNa3-like transcriptions are dependent on both M3 sites with AlIRF9. In addition, AlIRF9 could greatly reduce two AlIFNa3s and interferon signalling factors expressions. These results showed that in A. latus, both AlIFNa3 and AlIFNa3-like can mediate the regulation of AlIRF9 in the process of infection with S. iniae.
Collapse
Affiliation(s)
- Hong-Xi He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, 510300, China; Sanya Tropical Fisheries Research Institute, Sanya, 510300, China.
| |
Collapse
|