1
|
Wu M, Sheng J, Xie Q, Qi Y, Zhao Y, Zhang S. Recent advances in stimuli-responsive hyaluronic acid-based nanodelivery systems for cancer treatment: A review. Int J Biol Macromol 2025; 316:144357. [PMID: 40403810 DOI: 10.1016/j.ijbiomac.2025.144357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/09/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025]
Abstract
Cancer is a worldwide public health problem that poses a serious threat to human health. Drug therapy, as the mainstay of cancer treatment, relies on carriers for the in vivo delivery of chemotherapeutic or nucleic acid-based drugs. Traditional drug delivery carriers have shortcomings, however, including a lack of targeting, uncontrollable release of drugs, and low stability, potentially leading to toxic side effects and reducing their antitumor efficacy. Advances in nanotechnology and biomedicine have furthered the development of stimuli-responsive nanodelivery systems, which can be used to realize the accumulation and on-demand release of drugs and reduce the required drug dosage and toxicity. Hyaluronic acid (HA), as a natural anionic polysaccharide with excellent biocompatibility, an easily modified structure, and the ability to target cancer cells, is a US Food and Drug Administration-approved biomaterial that is ideal for the construction of stimuli-responsive nanodelivery systems. Herein, we review HA-based stimuli-responsive nanodelivery systems including various HA-modified structures. We summarize the feasibility and effectiveness of these systems in cancer therapy according to their roles as endogenous- (pH, redox, enzyme, and hypoxia) or exogenous- (light, temperature, ultrasound, and magnetism) stimuli-responsive systems. We also discuss the problems and challenges in the development of HA-based stimuli-responsive nanodelivery systems and the perspectives for future development. This review highlights the great potential of HA-based stimuli-responsive nanodelivery systems for use in precision cancer treatment and controlled drug release.
Collapse
Affiliation(s)
- Mengdi Wu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiabao Sheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China; Faculty of Health and Medicine, School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Qihan Xie
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
2
|
Liang B, Zhou Y, Qin Y, Li X, Zhou S, Yuan K, Zhao R, Lv X, Qin D. Research Progress on Using Nanoparticles to Enhance the Efficacy of Drug Therapy for Chronic Mountain Sickness. Pharmaceutics 2024; 16:1375. [PMID: 39598498 PMCID: PMC11597246 DOI: 10.3390/pharmaceutics16111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic mountain sickness (CMS) poses a significant health risk to individuals who rapidly ascend to high altitudes, potentially endangering their lives. Nanoparticles (NPs) offer an effective means of transporting and delivering drugs, protecting nucleic acids from nuclease degradation, and mediating the expression of target genes in specific cells. These NPs are almost non-toxic and easy to prepare and store, possess a large surface area, exhibit good biocompatibility and degradability, and maintain good stability. They can be utilized in the treatment of CMS to enhance the therapeutic efficacy of drugs. This paper provides an overview of the impact of NPs on CMS, discussing their roles as nanocarriers and their potential in CMS treatment. It aims to present novel therapeutic strategies for the clinical management of CMS and summarizes the relevant pathways through which NPs contribute to plateau disease treatment, providing a theoretical foundation for future clinical research.
Collapse
Affiliation(s)
- Boshen Liang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Yang Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Xinyao Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Sitong Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Kai Yuan
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Rong Zhao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Xiaoman Lv
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| |
Collapse
|
3
|
Gong J, Feng R, Fu X, Lin Q, Wu B. Fabrication of co-delivery liposomal formulation incorporating carmustine and cabazitaxel displays improved cytotoxic potential and induced apoptosis in ovarian cancer cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-21. [PMID: 39207251 DOI: 10.1080/09205063.2024.2387949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 09/04/2024]
Abstract
Ovarian cancer is the primary cause of death from cancer in female patients. The existing treatments for ovarian cancer are restricted and ineffective in achieving a cure for the disease. To address this issue, we provide a novel approach to treating ovarian cancer by utilizing a liposomal carrier that effectively delivers the chemotherapeutic drugs carmustine (BCNU) and cabazitaxel (CTX). Initially, the combined impact of BCNU and CTX was confirmed, revealing that this impact reaches its maximum at a ratio of 1:2 mol/mol (BCNU/CTX). After that, the BC-Lipo co-delivery system was developed, which has a high capability for loading drugs (97.48% ± 1.14 for BCNU, 86.29% ± 3.03 for CTX). This system also has a sustained release profile and a beneficial long-circulating feature. The accumulation of BC-Lipo in tumors was dramatically enhanced compared to the accumulation of the free drug. Furthermore, BC-Lipo demonstrated similar levels of cytotoxicity to free BCNU and CTX (BCNU/CTX) when tested on HeyA8 cells in an in vitro model. Biochemical staining methods investigated the cancer cell's morphological examination. The apoptosis was confirmed by FITC-Annexin-V/PI staining by flow cytometry analysis. In addition, the investigation of fluorescence and protein markers examined the apoptosis mechanistic pathway, and the results indicated that BC-Lipo induced apoptosis due to mitochondrial membrane potential variation. This proof-of-concept study has established the probability of these BCNU-CTX combined treatments as active drug delivery nanocarriers for poorly soluble BCNU and CTX.
Collapse
Affiliation(s)
- Jianming Gong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Renqian Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoqing Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Li D, Ren T, Wang X, Xiao Z, Sun G, Zhang N, Zhao L, Zhong R. A Tween-80 modified hypoxia/esterase dual stimulus-activated nanomicelle as a delivery platform for carmustine - Design, synthesis, and biological evaluation. Int J Biol Macromol 2024; 274:133404. [PMID: 38925197 DOI: 10.1016/j.ijbiomac.2024.133404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
As a clinical anti-glioma agent, the therapeutic effect of carmustine (BCNU) was largely decreased because of the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and the blood-brain barrier (BBB). To overcome these obstacles, we synthesized a BCNU-loaded hypoxia/esterase dual stimulus-activated nanomicelle, abbreviated as T80-HACB/BCNU NPs. In this nano-system, Tween 80 acts as the functional coating on the surface of the micelle to facilitate transport across the BBB. Hyaluronic acid (HA) with active tumor-targeting capability was linked with the hypoxia-sensitive AGT inhibitors (O6-azobenzyloxycarbonyl group) via an esterase-activated ester bond. The obtained T80-HACB/BCNU NPs had an average particle size of 232.10 ± 10.66 nm, the zeta potential of -18.13 ± 0.91 mV, and it showed high drug loading capacity, eximious biocompatibility and dual activation of hypoxia/esterase drug release behavior. The obtained T80-HACB/BCNU NPs showed enhanced cytotoxicity against hypoxic T98G and SF763 cells with IC50 at 132.2 μM and 133.1 μM, respectively. T80 modification improved the transportation of the micelle across an in vitro BBB model. The transport rate of the T80-HACB/Cou6 NPs group was 12.37 %, which was 7.6-fold (p<0.001) higher than the micelle without T80 modification. T80-HACB/BCNU NPs will contribute to the development of novel CENUs chemotherapies with high efficacy.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Zhixuan Xiao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Xu Y, Bai Z, Lan T, Fu C, Cheng P. CD44 and its implication in neoplastic diseases. MedComm (Beijing) 2024; 5:e554. [PMID: 38783892 PMCID: PMC11112461 DOI: 10.1002/mco2.554] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 05/25/2024] Open
Abstract
CD44, a nonkinase single span transmembrane glycoprotein, is a major cell surface receptor for many other extracellular matrix components as well as classic markers of cancer stem cells and immune cells. Through alternative splicing of CD44 gene, CD44 is divided into two isoforms, the standard isoform of CD44 (CD44s) and the variant isoform of CD44 (CD44v). Different isoforms of CD44 participate in regulating various signaling pathways, modulating cancer proliferation, invasion, metastasis, and drug resistance, with its aberrant expression and dysregulation contributing to tumor initiation and progression. However, CD44s and CD44v play overlapping or contradictory roles in tumor initiation and progression, which is not fully understood. Herein, we discuss the present understanding of the functional and structural roles of CD44 in the pathogenic mechanism of multiple cancers. The regulation functions of CD44 in cancers-associated signaling pathways is summarized. Moreover, we provide an overview of the anticancer therapeutic strategies that targeting CD44 and preclinical and clinical trials evaluating the pharmacokinetics, efficacy, and drug-related toxicity about CD44-targeted therapies. This review provides up-to-date information about the roles of CD44 in neoplastic diseases, which may open new perspectives in the field of cancer treatment through targeting CD44.
Collapse
Affiliation(s)
- Yiming Xu
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziyi Bai
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Tianxia Lan
- Department of BiotherapyLaboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Chenying Fu
- Laboratory of Aging and Geriatric Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ping Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
6
|
Wang J, Ren T, Sun G, Zhang N, Zhao L, Zhong R. Mechanism of AGT-Mediated Repair of dG-dC Cross-Links in the Drug Resistance to Chloroethylnitrosoureas: Molecular Docking, MD Simulation, and ONIOM (QM/MM) Investigation. J Chem Inf Model 2024; 64:3411-3429. [PMID: 38511939 DOI: 10.1021/acs.jcim.3c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Chloroethylnitrosoureas (CENUs) are important chemotherapies applied in the treatment of cancer. They exert anticancer activity by inducing DNA interstrand cross-links (ICLs) via the formation of two O6-alkylguanine intermediates, O6-chloroethylguanine (O6-ClEtG) and N1,O6-ethanoguanine (N1,O6-EtG). However, O6-alkylguanine-DNA alkyltransferase (AGT), a DNA-repair enzyme, can restore the O6-alkylguanine damages and thereby obstruct the formation of ICLs (dG-dC cross-link). In this study, the inhibitory mechanism of ICL formation was investigated to elucidate the drug resistance of CENUs mediated by AGT in detail. Based on the structures of the substrate-enzyme complexes obtained from docking and MD simulations, two ONIOM (QM/MM) models with different sizes of the QM region were constructed. The model with a larger QM region, which included the substrate (O6-ClEtG or N1,O6-EtG), a water molecule, and five residues (Tyr114, Cys145, His146, Lys165, and Glu172) in the active pocket of AGT, accurately described the repairing reaction and generated the results coinciding with the experimental outcomes. The repair process consists of two sequential steps: hydrogen transfer to form a thiolate anion on Cys145 and alkyl transfer from the O6 site of guanine (the rate-limiting step). The repair of N1,O6-EtG was more favorable than that of O6-ClEtG from both kinetics and thermodynamics aspects. Moreover, the comparison of the repairing process with the formation of dG-dC cross-link and the inhibition of AGT by O6-benzylguanine (O6-BG) showed that the presence of AGT could effectively interrupt the formation of ICLs leading to drug resistance, and the inhibition of AGT by O6-BG that was energetically more favorable than the repair of O6-ClEtG could not prevent the repair of N1,O6-EtG. Therefore, it is necessary to completely eliminate AGT activity before CENUs medication to enhance the chemotherapeutic effectiveness. This work provides reasonable explanations for the supposed mechanism of AGT-mediated drug resistance of CENUs and will assist in the development of novel CENU chemotherapies and their medication strategies.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Jha A, Kumar M, Bharti K, Manjit M, Mishra B. Biopolymer-based tumor microenvironment-responsive nanomedicine for targeted cancer therapy. Nanomedicine (Lond) 2024; 19:633-651. [PMID: 38445583 DOI: 10.2217/nnm-2023-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Nanomedicine has opened up new avenues for cancer treatment by enhancing drug solubility, permeability and targeted delivery to cancer cells. Despite its numerous advantages over conventional therapies, nanomedicine may exhibit off-target drug distribution, harming nontarget regions. The increased permeation and retention effect of nanomedicine in tumor sites also has its limitations, as abnormal tumor vasculature, dense stroma structure and altered tumor microenvironment (TME) may result in limited intratumor distribution and therapeutic failure. However, TME-responsive nanomedicine has exhibited immense potential for efficient, safe and precise delivery of therapeutics utilizing stimuli specific to the TME. This review discusses the mechanistic aspects of various TME-responsive biopolymers and their application in developing various types of TME-responsive nanomedicine.
Collapse
Affiliation(s)
- Abhishek Jha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Manish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Manjit Manjit
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
8
|
Li D, Ren T, Wang X, Xiao Z, Sun G, Zhang N, Zhao L, Zhong R. Development and in vitro evaluation of carmustine delivery platform: A hypoxia-sensitive anti-drug resistant nanomicelle with BBB penetrating ability. Biomed Pharmacother 2023; 167:115631. [PMID: 37804814 DOI: 10.1016/j.biopha.2023.115631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Glioma is extremely difficult to be completely excised by surgery due to its invasive nature. Thus, chemotherapy still is the mainstay in the treatment of glioma after surgery. However, the natural blood-brain barrier (BBB) greatly restricts the penetration of chemotherapeutic agents into the central nervous system. As a front-line anti-glioma agent in clinical, carmustine (BCNU) exerts antitumor effect by inducing DNA damage at the O6 position of guanine. However, the therapeutic effect of BCNU was largely decreased because of the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and insufficient local drug concentrations. To overcome these obstacles, we synthesized a BCNU-loaded hypoxia-responsive nano-micelle with BBB penetrating capacity and AGT inhibitory activity, named as T80-HA-AZO-BG/BCNU NPs. In this nano-system, Tween 80 (T80) serves as a functional coating on the surface of the micelle, promoting transportation across the BBB. Hyaluronic acid (HA) with active tumor-targeting capability was linked with the hydrophobic O6-benzylguanine (BG) analog via a hypoxia-sensitive azo bond. Under hypoxic tumor microenvironment, the azo bond selectively breaks to release O6-BG as AGT inhibitor and BCNU as DNA alkylating agent. The synthesized T80-HA-AZO-BG/BCNU NPs showed good stability, favorable biocompatibility and hypoxia-responsive drug-releasing ability. T80 modification improved the transportation of the micelle across an in vitro BBB model. Moreover, T80-HA-AZO-BG/BCNU NPs exhibited significantly enhanced cytotoxicity against glioma cell lines with high AGT expression compared with traditional combined medication of BCNU plus O6-BG. We expect that the tumor-targeting nano-micelle designed for chloroethylnitrosourea will provide new tools for the development of effective glioma therapy.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Zhixuan Xiao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Lu Y, Wu L, Lin M, Bao X, Zhong H, Ke P, Dai Q, Yang Q, Tang X, Xu W, Xu D, Han M. Double layer spherical nanoparticles with hyaluronic acid coating to enhance oral delivery of exenatide in T2DM rats. Eur J Pharm Biopharm 2023; 191:205-218. [PMID: 37683898 DOI: 10.1016/j.ejpb.2023.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Soybean phospholipid was used as an amphiphilic material to form reverse micelles (RMs) in medium glycerol monolinoleate (Maisine) with Exenatide (EXT.) encapsulated in the polar core formed by the hydrophilic part of phospholipid. Cremopher RH40 and caprylocaproyl macrogol-8 glycerides EP/caprylocaproyl polyoxyl-8 glycerides NF (Labrasol) were added as surfactants to prepare reverse micelles-self emulsifying drug delivery system (RMs-SEDDS). On this basis, oil in water (O/W) emulsion was further prepared. By adding DOTAP, the surface of the emulsion was positively charged. Finally, hyaluronic acid wrapping in the outermost layer by electrostatic adsorption and reverse micelles-O/W-sodium hyaluronate (RMs-O/W-HA) nanoparticles containing Exenatide were prepared. RMs-SEDDS was spherical with an average particle size of 213.6 nm and RMs-O/W-HA was double-layered spherical nanoparticle with an average particle size of 309.2 nm. HA coating enhanced the adhesion of nanoparticles (NPs), and RMs-O/W-HA increased cellular uptake through CD44-mediated endocytosis. Pharmacodynamics results showed that RMs-SEDDS and RMs-O/W-HA could reduce blood glucose in type 2 diabetic rats, protect pancreatic β cells to a certain extent, and relieve insulin resistance and hyperlipemia complications with good safety.
Collapse
Affiliation(s)
- Yiying Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linjie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengting Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Bao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiqing Zhong
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peng Ke
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Qi Dai
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyao Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinjiang Tang
- Hangzhou Leading Pharmatech Co., Ltd., 1500 Wenyi West Road, Building 4, 7th Floor, Hangzhou City, Zhejiang Province, China
| | - WenHong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - DongHang Xu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China.
| |
Collapse
|