1
|
Mottaghitalab F, Farokhi M. Stimulus-responsive biomacromolecule wound dressings for enhanced drug delivery in chronic wound healing: A review. Int J Biol Macromol 2024; 281:136496. [PMID: 39419149 DOI: 10.1016/j.ijbiomac.2024.136496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Addressing the challenge of poor wound healing in chronic wounds remains complex, as the underlying physiological mechanisms are still not fully understood. Traditional wound dressings often fail to meet the specific needs of the chronic wound healing process. Recently, considerable interest has shifted toward employing biomacromolecule-based smart wound dressings to facilitate wound healing. These stimuli-responsive dressings have undergone substantial development to manage local drug delivery, demonstrating promising therapeutic effects in treating chronic wound defects. They have displayed improved drug release profiles both in vitro and in vivo. Recently, there have been advancements in the development of innovative dual and multi-stimuli responsive dressings that react to combinations of signals including pH-temperature, pH-enzyme, pH-ROS, pH-glucose, pH-NIR, and multiple stimuli. This paper offers an in-depth review of recent progress in responsive wound dressings based on biomacromolecules, with a specific focus on their design, drug release capabilities, and therapeutic advantages.
Collapse
Affiliation(s)
- Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Liu R, Xi P, Yang N, Cheng B. Multifunctional Janus Membrane for Diabetic Wound Healing and Intelligent Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41927-41938. [PMID: 39090773 DOI: 10.1021/acsami.4c09353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The complex microenvironment of diabetic wounds often hinders the healing process, ultimately leading to the formation of diabetic foot ulcers and even death. Dual monitoring and treatment of wounds can significantly reduce the incidence of such cases. Herein, a multifunctional Janus membrane (3D chitosan sponge-ZE/polycaprolactone nanofibers-ZP) was developed by incorporating the zinc metal-organic framework, europium metal-organic framework, and phenol red into nanofibers for diabetic wound monitoring and treatment. The directional water transport capacity of the resulting Janus membrane allows for unidirectional and irreversible drainage of wound exudate, and the multifunctional Janus membrane creates up to a 99% antibacterial environment, both of which can treat wounds. Moreover, the pH (5-8) and H2O2 (0.00-0.80 μM) levels of the wound can be monitored using the color-changing property of phenol red and the fluorescence characteristic of Eu-MOF on the obtained membrane, respectively. The healing stages of the wound can also be monitored by analyzing the RGB values of the targeted membrane images. This design can more accurately reflect the wound state and treat the wound to reduce bacterial infection and accelerate wound healing, which has been demonstrated in in vivo experiments. The results provide an important basis for early intervention in diabetic patients.
Collapse
Affiliation(s)
- Ru Liu
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Peng Xi
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
- State Key Laboratory of Separation Membranes & Membrane Process, Tiangong University, Tianjin 300387, PR China
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, Tiangong University, Tianjin 300387, PR China
| | - Ning Yang
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
- State Key Laboratory of Separation Membranes & Membrane Process, Tiangong University, Tianjin 300387, PR China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes & Membrane Process, Tiangong University, Tianjin 300387, PR China
- School of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
3
|
Xu B, Zhang JE, Ye L, Yuan CW. Curcumin Interferes with TGF- β 1-Induced Fibrosis in NRK-49F Cells by Reversing ADAMTS18 Gene Methylation. Chin J Integr Med 2024; 30:600-607. [PMID: 37812341 DOI: 10.1007/s11655-023-3564-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE To explore the molecular mechanism by which curcumin affects renal interstitial fibrosis (RIF) progression by regulating ADAM metallopeptidase with thrombospondin type 1 motif 18 (ADAMTS18) methylation. METHODS NRK-49F cells RIF model were induced with transforming growth factor β 1 (TGF- β 1). Effects of different concentrations of curcumin (0, 10, 20, and 30 μmol/L) on cell proliferation, cell cycle, cell apoptosis as well as cyclin D1 expression were analyzed by cell counting kit-8, flow cytometry and Western blot, respectively. ADAMTS18 methylation levels were determined by methylation-specific polymerase chain reaction. ADAMTS18, fibronectin (FN), type I collagen (Col- I) and alpha-smooth muscle actin (α -SMA) mRNA and protein expressions were analyzed by real-time PCR (RT-PCR) and Western blot, respectively. Meanwhile, cells were treated with 50 mmol/L 5-aza-2'-deoxycytidine (5-aza-dC, demethylation agent) for 72 h. Effect of curcumin on extracellular matrix (ECM) deposition was evaluated by immunochemical staining and Western blot. NRK-49F cells were transfected with ADAMTS18 small interfering RNA and grouped into a normal control, ADAMTS18-knock-out (KO), and ADAMTS18-KO+ 30 μmol/L curcumin groups, and whether curcumin can reverse the effect of ADAMTS18 knockdown on RIF was evaluated. RESULTS Compared with the control group, TGF-β 1 significantly inhibited the proliferation of NRK-49F cells, blocked the G1/G0 phase, promoted cell apoptosis and inhibited cyclin D1 expression (P<0.01). Among the different concentrations of curcumin, 30 μmol/L curcumin significantly reversed these processes (P<0.01). Immunochemical staining and Western blot results showed that curcumin significantly inhibited the deposition of FN, Col- I and α-SMA (P<0.01). Curcumin and 5-zaz-dC had synergistic effects, promoting ADAMTS18 expression, removing ADAMTS18 methylation, and reducing ECM deposition. ADAMTS18 knockdown promoted ECM accumulation, and curcumin reversed this process (P<0.01). CONCLUSION TGF-β 1-induced fibrosis in NRK-49F cells. Curcumin promoted ADAMTS18 expression, reduced ECM accumulation, and alleviated RIF progression by inhibiting ADAMTS18 methylation.
Collapse
Affiliation(s)
- Ben Xu
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, National Urological Cancer Center, Beijing, 100034, China.
| | - Jia-En Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, National Urological Cancer Center, Beijing, 100034, China
| | - Lin Ye
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, National Urological Cancer Center, Beijing, 100034, China
| | - Chang-Wei Yuan
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, National Urological Cancer Center, Beijing, 100034, China
| |
Collapse
|
4
|
Chen Y, Lin H, Yue X, Lai E, Huang J, Zhao Z. Wound Dressing Based on Cassava Silk-Chitosan. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2986. [PMID: 38930355 PMCID: PMC11205375 DOI: 10.3390/ma17122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The application prospects of composite sponges with antibacterial and drug-carrying functions in the field of medical tissue engineering are extensive. A solution of cassava silk fibroin (CSF) was prepared with Ca(NO3)2 as a solvent, which was then combined with chitosan (CS) to create a sponge-porous material by freeze-drying. The CSF-CS composite sponge with a mesh structure was successfully fabricated through hydrogen bonding. Scanning electron microscopy (SEM), Fourier transform infrared absorption (FTIR) and X-ray diffraction (XRD) were employed to investigate the appearance and structure of the cassava silk's fibroin materials, specifically examining the impact of different mass percentages of CS on the sponge's structure. The swelling rate and mechanical properties of the CSF-CS sponge were analyzed, along with its antibacterial properties. Furthermore, by incorporating ibuprofen as a model drug into these loaded sponges, their potential efficacy as efficient drug delivery systems was demonstrated. The results indicate that the CSF-CS sponge possesses a three-dimensional porous structure with over 70% porosity and an expansion rate exceeding 400% while also exhibiting good resistance against pressure. Moreover, it exhibits excellent drug-carrying ability and exerts significant bacteriostatic effects on Escherichia coli. Overall, these findings support considering the CSF-CS composite sponge as a viable candidate for use in drug delivery systems or wound dressings.
Collapse
Affiliation(s)
- Yumei Chen
- School of Guangxi Key Laboratory of Sugar Resources of Green Processing, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (Y.C.); (X.Y.); (E.L.); (J.H.)
| | - Haitao Lin
- School of Guangxi Key Laboratory of Sugar Resources of Green Processing, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (Y.C.); (X.Y.); (E.L.); (J.H.)
| | - Xinxia Yue
- School of Guangxi Key Laboratory of Sugar Resources of Green Processing, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (Y.C.); (X.Y.); (E.L.); (J.H.)
| | - Enping Lai
- School of Guangxi Key Laboratory of Sugar Resources of Green Processing, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (Y.C.); (X.Y.); (E.L.); (J.H.)
| | - Jiwei Huang
- School of Guangxi Key Laboratory of Sugar Resources of Green Processing, School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (Y.C.); (X.Y.); (E.L.); (J.H.)
| | - Ziyu Zhao
- School of Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Wu H, Gao B, Wu H, Song J, Zhu L, Zhou M, Linghu X, Huang S, Zhou Z, Wa Q. A unidirectional water-transport antibacterial bilayer nanofibrous dressing based on chitosan for accelerating wound healing. Int J Biol Macromol 2024; 269:131878. [PMID: 38692530 DOI: 10.1016/j.ijbiomac.2024.131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Excessive accumulation of exudate from wounds often causes infection and hinders skin regeneration. To handle wound exudate quickly and prevent infection, we developed an antibacterial Janus nanofibrous dressing with a unidirectional water-transport function. The dressing consists of a hydrophilic chitosan aerogel (CS-A) as the outer layer and a hydrophobic laurylated chitosan (La-CS) nanofibrous membrane as the inner layer. These dressings achieved excellent liquid absorption performance (2987.8 ± 123.5 %), air and moisture permeability (997.8 ± 23.1 g/m2/day) and mechanical strength (5.1 ± 2.6 MPa). This performance was obtained by adjusting the density of CS-A and the thickness of the La-CS membrane. Moreover, the dressing did not induce significant toxicity to cells and can prevent bacterial aggregation and infection at the wound site. Animal experiments showed that the dressing can shorten the inflammatory phase, enhance blood vessel generation, and accelerate collagen deposition, thus promoting wound healing. Overall, these results suggest that this Janus dressing is a promising material for clinical wound care.
Collapse
Affiliation(s)
- Hengpeng Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Honghan Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Jiaxiang Song
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Li Zhu
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Xiaogan 432000, China
| | - Meng Zhou
- Xiaonan District Branch of Hubei Agricultural Broadcasting and Television School, Xiaogan 432000, China
| | - Xitao Linghu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Shuai Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510632, China.
| | - Zongbao Zhou
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Xiaogan 432000, China.
| | - Qingde Wa
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
6
|
Zhu Z, Meng L, Gao Z, Liu R, Guo X, Wang H, Kong B. Development of chitosan/polycaprolactone-thymol Janus films with directional transport and antibacterial properties for meat preservation. Int J Biol Macromol 2024; 268:131669. [PMID: 38642683 DOI: 10.1016/j.ijbiomac.2024.131669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Reducing contamination from percolate is critical to the preservation of foods with high water content, such as pork. This study aims to develop a novel active packaging material for meat preservation by precisely controlled dual-channel one-step electrospinning. Compared to traditional strategies of preparing Janus films, this method allows for greater flexibility and efficiency. The structure and properties of the Janus film are characterized by scanning electron microscopy (SEM), water contact angle (WCA), directional liquid transport investigation, Thymol release and permeation features, and biocompatibility evaluation. Moreover, the Janus film is applied to the packaging of pork with modified atmosphere packaging to demonstrate its practical application prospects in the food active packaging field. The results revealed that the two sides of the film showed completely different wettability, and the change rate of WCA increased with the increase of the scale of hydrophilic fibers. The permeation features of thymol loaded in the film was consistent with the results of antibacterial properties and biocompatibility assessment. Moreover, the Janus film can effectively prolong the shelf life, improve the quality and safety of the pork.
Collapse
Affiliation(s)
- Zhaozhang Zhu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lingna Meng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhennan Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rongxu Liu
- Heilongjiang Green Food Science & Research Institute, Harbin 150028, China
| | - Xiang Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hao Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science & Research Institute, Harbin 150028, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Fang L, Hu Y, Lin Z, Ren Y, Liu X, Gong J. Instant mucus dressing of PEO reinforced by chitosan nanofiber scaffold for open wound healing. Int J Biol Macromol 2024; 263:130512. [PMID: 38423418 DOI: 10.1016/j.ijbiomac.2024.130512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Dressings seamlessly attached to the open wound bed are necessary for fully unleashing the dressing healing ability, as leaving the voids beneath the dressing poses infection hazards. The present study prepared an instant mucus dressing (IMD) of polyethylene oxide (PEO) reinforced by chitosan (CS) nanofiber scaffold, which formed by immersing PEO/CS nanofiber mat in water. The PEO/CS nanofiber mat were fabricated by the solution blow spinning (SBS) method using PEO and CS mixed solutions. Attenuated total reflection Fourier transform infrared spectroscopy (FTIR-ATR), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and differential scan calorimetry (DSC) analyses indicate that PEO macromolecules formed the most of nanofiber shell due to their lower surface tension while CS macromolecules stayed mainly inside the fiber as the core. When such a PEO/CS nanofiber mat was immersed in water, PEO swelled to form mucus dressing reinforced by CS inside the nanofiber, which was fluidic and able to fully fill the voids on the wound. In vivo rat experiment verified that the dressing significantly accelerated the open wound healing through seamlessly attaching of mucus to the open wound and providing moist environment. The dressings exhibit good platelets and whole blood cells adhesion properties, excellent hemostasis function and no cytotoxicity. This instant mucus dressing provided a new perspective for manufacturing high performance open wound dressings.
Collapse
Affiliation(s)
- Lei Fang
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China.
| | - Yanling Hu
- Traumatology Department, Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao 266071, China.
| | - Zhihao Lin
- Traumatology Department, Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao 266071, China
| | - Yanfei Ren
- College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xiuming Liu
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China.
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, 399 Binshui West Road, Tianjin 300387, China.
| |
Collapse
|