1
|
Yang Y, Ou Z, Wang Z, Yang T, Zhu J, Liu X. Preparation and characterization of a novel oligomeric gum from Eucommia ulmoides crosslinked with carboxymethyl chitosan antibacterial wound dressing for quick hemostasis. Int J Biol Macromol 2025; 308:142652. [PMID: 40158605 DOI: 10.1016/j.ijbiomac.2025.142652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/25/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
It is the expectation of wound management to develop high-efficiency wound dressing which can control bleeding and prevent infection in clinics. In this study, a new wound dressing was synthesized by cross-linking oligomeric gum from Eucommia ulmoides (OGE) and carboxymethyl chitosan (CC) with genipin. The chemical structure, micromorphology and wettability of the synthetic OGE-CC were characterized. The physical properties and biocompatibility evaluation of OGE-CC showed that the material displayed excellent swelling ratio, high porosity and no cytotoxicity. It also demonstrated strong antimicrobial activity, achieving 99.99% antibacterial efficacy against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P.aeruginosa). Compared with the maximum average compressive stress (MACS) of the commercial gelatin-based dressing (GBD, 95 ± 7 kPa), the OGE-CC (2:1) displayed a higher MACS of 166 ± 4 kPa, which indicated its superior compressive properties. OGE-CC displayed stable states under varying temperatures and humidity levels. In addition, OGE-CC showed faster hemostatic effects than GBD and silicone-based dressing (SBD) in mice models of tail amputation and hepatic hemorrhage. OGE-CC can degrade in PBS solution with the highest degradation rate of 63.24 ± 2.01 % after 20 days. These results suggested that OGE-CC had the potential to be developed as an antibacterial and hemostasis wound dressing.
Collapse
Affiliation(s)
- Yichun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zemin Ou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhimin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tianxiao Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Luz ECG, da Silva TF, Marques LSM, Andrade A, Lorevice MV, Andrade FK, Yang L, de Souza Filho AG, Faria AF, Silveira Vieira R. Bacteria-Derived Cellulose Membranes Modified with Graphene Oxide-Silver Nanoparticles for Accelerating Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:5530-5540. [PMID: 39093994 PMCID: PMC11337152 DOI: 10.1021/acsabm.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
This study reports on the modification of bacterial cellulose (BC) membranes produced by static fermentation of Komagataeibacter xylinus bacterial strains with graphene oxide-silver nanoparticles (GO-Ag) to yield skin wound dressings with improved antibacterial properties. The GO-Ag sheets were synthesized through chemical reduction with sodium citrate and were utilized to functionalize the BC membranes (BC/GO-Ag). The BC/GO-Ag composites were characterized to determine their surface charge, morphology, exudate absorption, antimicrobial activity, and cytotoxicity by using fibroblast cells. The antimicrobial activity of the wound dressings was assessed against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The results indicate that the BC/GO-Ag dressings can inhibit ∼70% of E. coli cells. Our findings also revealed that the porous BC/GO-Ag antimicrobial dressings can efficiently retain 94% of exudate absorption after exposure to simulated body fluid (SBF) for 24 h. These results suggest that the dressings could absorb excess exudate from the wound during clinical application, maintaining adequate moisture, and promoting the proliferation of epithelial cells. The BC/GO-Ag hybrid materials exhibited excellent mechanical flexibility and low cytotoxicity to fibroblast cells, making excellent wound dressings able to control bacterial infectious processes and promote the fast healing of dermal lesions.
Collapse
Affiliation(s)
| | - Thamyres Freire da Silva
- Department
of Chemical Engineering, Federal University
of Ceará (UFC), Fortaleza, Ceará 60455-760, Brazil
| | | | - Alexandre Andrade
- Department
of Pathology and Forensic Medicine, Federal
University of Ceará (UFC), Fortaleza, Ceará 60430-160, Brazil
| | - Marcos Vinicius
V Lorevice
- Brazilian
Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil
| | - Fabia Karine Andrade
- Department
of Chemical Engineering, Federal University
of Ceará (UFC), Fortaleza, Ceará 60455-760, Brazil
| | - Liu Yang
- Department
of Environmental Engineering Sciences, University
of Florida, Gainesville, Florida 32611-6540, United States
| | | | - Andreia F. Faria
- Department
of Environmental Engineering Sciences, University
of Florida, Gainesville, Florida 32611-6540, United States
| | - Rodrigo Silveira Vieira
- Department
of Chemical Engineering, Federal University
of Ceará (UFC), Fortaleza, Ceará 60455-760, Brazil
| |
Collapse
|
3
|
Poddar N, Chonzom D, Sen S, Malsawmtluangi, Parihar N, Patil PM, Balani J, Upadhyayula SM, Pemmaraju DB. Biocompatible arabinogalactan-chitosan scaffolds for photothermal pharmacology in wound healing and tissue regeneration. Int J Biol Macromol 2024; 268:131837. [PMID: 38663707 DOI: 10.1016/j.ijbiomac.2024.131837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Delayed wound healing is often caused by bacterial infections and persistent inflammation. Multifunctional materials with anti-bacterial, anti-inflammatory, and hemostatic properties are crucial for accelerated wound healing. In this study, we report a biomacromolecule-based scaffold (ArCh) by uniquely combining arabinogalactan (Ar) and chitosan (Ch) using a Schiff-based reaction. Further, the optimized ArCh scaffolds were loaded with Glycyrrhizin (GA: anti-inflammatory molecule) conjugated NIR light-absorbing Copper sulfide (CuS) nanoparticles. The resultant GACuS ArCh scaffolds were characterized for different wound healing parameters in in-vitro and in-vivo models. Our results indicated that GACuS ArCh scaffolds showed excellent swelling, biodegradation, and biocompatibility in vitro. Further results obtained indicated that GACuS ArCh scaffolds demonstrated mild hyperthermia and enhanced hemostatic, anti-oxidant, anti-bacterial, and wound-healing effects when exposed to NIR light. The scaffolds, upon further validation, may be beneficial in accelerating wound healing and tissue regeneration response.
Collapse
Affiliation(s)
- Nidhi Poddar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Donker Chonzom
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Santimoy Sen
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Malsawmtluangi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Nidhi Parihar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Prathamesh Mahadev Patil
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Jagdish Balani
- Central Animal house facility (CAF), National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Suryanarayana Murty Upadhyayula
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India
| | - Deepak B Pemmaraju
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Assam 781101, India.
| |
Collapse
|
4
|
Tang Z, Dan N, Chen Y. Utilizing epoxy Bletilla striata polysaccharide collagen sponge for hemostatic care and wound healing. Int J Biol Macromol 2024; 259:128389. [PMID: 38000600 DOI: 10.1016/j.ijbiomac.2023.128389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Hemostatic materials that are lightweight and possess good blood absorption performance have been widely considered for use in modern wound care. Natural hemostatic ingredients derived from traditional Chinese medicine have also received extensive attention. Bletilla polysaccharides are valued by researchers for their excellent hemostatic performance and good reactivity. Collagen is favored by researchers due to its high biocompatibility and low immunogenicity. In this study, Bletilla striata polysaccharide, the main hemostatic component of Bletilla striata, was activated by epoxy groups, and epoxidized Bletilla striata polysaccharide (EBSP) was prepared. Then, EBSP was crosslinked with collagen under alkaline conditions, and a new hemostatic material that was an epoxidized Bletilla polysaccharide crosslinked collagen hemostatic sponge was prepared. We demonstrated that endowing collagen with better hemostatic performance, cytocompatibility, and blood compatibility does not destroy its original three-stranded helical structure. Compared with the medical gauze, hemostasis time was shorter (26.75 ± 2.38 s), and blood loss was lower (0.088 ± 0.051 g) in the rat liver injury hemostasis model. In the rat model of severed tail hemostasis, hemostasis time was also shorter (47.33 ± 2.05 s), and the amount of blood loss was lower (0.330 ± 0.122 g). The sponge possessed good hemostatic and healing performance.
Collapse
Affiliation(s)
- Zhongyu Tang
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, Sichuan 610065, China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, Sichuan 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu, Sichuan 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
5
|
Wang X, Liu T, Chen M, Liang Q, Jiang J, Chen L, Fan K, Zhang J, Gao L. An Erythrocyte-Templated Iron Single-Atom Nanozyme for Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307844. [PMID: 38054654 PMCID: PMC10853745 DOI: 10.1002/advs.202307844] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/14/2023] [Indexed: 12/07/2023]
Abstract
Iron single-atom nanozymes represent a promising artificial enzyme with superior activity owing to uniform active sites that can precisely mimic active center of nature enzymes. However, current synthetic strategies are hard to guarantee each active site at single-atom state. In this work, an erythrocyte-templated strategy by utilizing intrinsic hemin active center of hemoglobin as sing-atom source for nanozyme formation is developed. By combining cell fixation, porous salinization, and high-temperature carbonization, erythrocytes are successfully served as uniform templates to synthesize nanozymes with fully single-atom FeN4 active sites which derived from hemin of hemoglobin, resulting in an enhanced peroxidase (POD)-like activity. Interestingly, the catalytic activity of erythrocyte-templated nanozyme (ETN) shows dependence on animal species, among which murine ETN performed superior catalytic efficiency. In addition, the as-prepared ETNs display a honeycomb-like network structure, serving as a sponge to accelerate hemostasis based on the interactions with prothrombin and fibrinogen. These features enable ETN to effectively kill methicillin-resistant Staphylococcus aureus (MRSA) by combining POD-like catalysis with near-infrared (NIR) induced photothermal effect, and subsequently suitable to promote wound healing. This study provides a proof-of-concept for facile fabrication of multifunctional nanozymes with uniform single-atom active sites by utilizing intrinsic iron structure characteristics of biogenic source like erythrocytes.
Collapse
Affiliation(s)
- Xiaonan Wang
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesChaoyangBeijing100101China
- School of Life SciencesUniversity of Chinese Academy of SciencesHaidianBeijing100049China
| | - Ting Liu
- College of Life Science and BioengineeringBeijing Jiaotong UniversityHaidianBeijing100044China
- School of Life Science and TechnologyJinan UniversityGuangzhouGuangdong510632China
| | - Mengxia Chen
- College of Life Science and BioengineeringBeijing Jiaotong UniversityHaidianBeijing100044China
- School of Life SciencesJilin Normal UniversitySipingJilin136000China
| | - Qian Liang
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesChaoyangBeijing100101China
| | - Jing Jiang
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesChaoyangBeijing100101China
| | - Lei Chen
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesChaoyangBeijing100101China
| | - Kelong Fan
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesChaoyangBeijing100101China
- Joint Laboratory of Nanozymes in Zhengzhou UniversityAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450000China
| | - Jinhua Zhang
- College of Life Science and BioengineeringBeijing Jiaotong UniversityHaidianBeijing100044China
| | - Lizeng Gao
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesChaoyangBeijing100101China
- Joint Laboratory of Nanozymes in Zhengzhou UniversityAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450000China
| |
Collapse
|