1
|
Zhan J, Kong Y, Zhou X, Gong H, Chen Q, Zhang X, Zhang J, Wang Y, Huang W. 3D printing of wearable sensors with strong stretchability for myoelectric rehabilitation. Biomater Sci 2025; 13:1021-1032. [PMID: 39815832 DOI: 10.1039/d4bm01434k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Myoelectric biofeedback (EMG-BF) is a widely recognized and effective method for treating movement disorders caused by impaired nerve function. However, existing EMG-feedback devices are almost entirely located in large medical centers, which greatly limits patient accessibility. To address this critical limitation, there is an urgent need to develop a portable, cost-effective, and real-time monitoring device that can transcend the existing barriers to the treatment of EMG-BF. Our proposed solution leverages polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as core materials, ingeniously incorporating wood pulp nano celluloses (CNF-P)-Na+ to enhance the structural integrity. Additionally, the inclusion of nano-silica particles further augments the sensor's capabilities, enabling the creation of a stress-sensitive mineral ionization hydrogel sensor. This innovative approach not only capitalizes on the superior rheological properties of the materials but also, through advanced 3D printing technology, facilitates the production of a micro-scale structural hydrogel sensor with unparalleled sensitivity, stability, and durability. The potential of this sensor in the realm of human motion detection is nothing short of extraordinary. This development can potentially improve the treatment landscape for EMG-BF offering patients more convenient and efficient therapeutic options.
Collapse
Affiliation(s)
- Jianan Zhan
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
| | - Yueying Kong
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001, Hengyang, China
| | - Xi Zhou
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Haihuan Gong
- Department of Periodontics, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Qiwei Chen
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Xianlin Zhang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
| | - Jiankai Zhang
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
| | - Yilin Wang
- Department of Human Anatomy, College of Basic Medical Science, China Medical University, 110122, Shenyang, China.
| | - Wenhua Huang
- Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, China
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001, Hengyang, China
| |
Collapse
|
2
|
Oz Y, Roy A, Jain S, Zheng Y, Mahmood E, Baidya A, Annabi N. Designing a Naturally Inspired Conductive Copolymer to Engineer Wearable Bioadhesives for Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36002-36016. [PMID: 38954606 DOI: 10.1021/acsami.4c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The design of adhesive and conductive soft hydrogels using biopolymers with tunable mechanical properties has received significant interest in the field of wearable sensors for detecting human motions. These hydrogels are primarily fabricated through the modification of biopolymers to introduce cross-linking sites, the conjugation of adhesive components, and the incorporation of conductive materials into the hydrogel network. The development of a multifunctional copolymer that integrates adhesive and conductive properties within a single polymer chain with suitable cross-linking sites eliminates the need for biopolymer modification and the addition of extra conductive and adhesive components. In this study, we synthesized a copolymer based on poly([2-(methacryloyloxy)ethyl] trimethylammonium chloride-co-dopamine methacrylamide) (p(METAC-DMA)) using a controlled radical polymerization, allowing for the efficient conjugation of both adhesive and conductive units within a single polymer chain. Subsequently, our multifunctional hydrogel named Gel-MD was fabricated by mixing the p(METAC-DMA) copolymer with non-modified gelatin in which cross-linking took place in an oxidative environment. We confirmed the biocompatibility of the Gel-MD hydrogel through in vitro studies using NIH 3T3 cells as well as in vivo subcutaneous implantation in rats. Furthermore, the Gel-MD hydrogel was effective and sensitive in detecting various human motions, making it a promising wearable sensor for health monitoring and diagnosis.
Collapse
Affiliation(s)
- Yavuz Oz
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Edrees Mahmood
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Encinas-Encinas JC, Castillo-Ortega MM, Del Castillo-Castro T, Rodríguez-Félix DE, Quiroz Castillo JM, Huitrón Gamboa JA. Evaluation of Strain Sensors Based on Poly(acrylonitrile- co-butadiene) and Polypyrrole Synthesized by the Diffusion Method. ACS OMEGA 2024; 9:25034-25041. [PMID: 38882075 PMCID: PMC11170624 DOI: 10.1021/acsomega.4c02166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
In this study, the functionality of an elastomer composite material containing polypyrrole (PPy) as a stress sensor was evaluated. The material was prepared using the swelling method by diffusing the pyrrole monomer into the elastomer before polymerization. To achieve adequate diffusion, organic solvents with affinity for the elastomer were used. The resulting materials were characterized by scanning electron microscopy (SEM), surface electrical resistance, and thermal and mechanical properties for application as a stress sensor. The simultaneous change in electrical resistance and tension stress was measured using a digital multimeter with electrodes connected to the jaws of a universal mechanical testing machine. The influence of stress cycles on the piezoresistivity of the composite materials was investigated. The obtained PPy/NBR composite presented a good combination of electrical conductivity and mechanical properties. The strain at break remained with mild variation after coating with PPy.
Collapse
Affiliation(s)
| | | | - Teresa Del Castillo-Castro
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico
| | | | | | | |
Collapse
|
4
|
Freitas MC, Sanati AL, Lopes PA, Silva AF, Tavakoli M. 3D Printed Gallium Battery with Outstanding Energy Storage: Toward Fully Printed Battery-on-the-Board Soft Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304716. [PMID: 38335309 DOI: 10.1002/smll.202304716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/25/2023] [Indexed: 02/12/2024]
Abstract
The last decade observed rapid progress in soft electronics. Yet, the ultimate desired goal for many research fields is to fabricate fully integrated soft-matter electronics with sensors, interconnects, and batteries, at the ease of pushing a print button. In this work, an important step is taken toward this by demonstrating an ultra-stretchable thin-film Silver-Gallium (Ag-Ga) battery with an unprecedented combination of areal capacity and mechanical strain tolerance. The Biphasic Gallium-Carbon anode electrode demonstrates a record-breaking areal capacity of 78.7 mAh cm-2, and an exceptional stretchability of 170%, showing clear progress over state-of-the-art. The exceptional theoretical capacity of gallium, along with its natural liquid phase self-healing, and its dendrite-free operation permits excellent electromechanical cycling. All composites of the battery including liquid-metal-based current collectors, and electrodes are sinter-free and digitally printable at room temperature, enabling the use of a wide range of substrates, including heat-sensitive polymer films. Consequently, it is demonstrated for the first time multi-layer, and multi-material digital printing of complex battery-on-the-board stretchable devices that integrate printed sensor, multiple cells of printed battery, highly conductive interconnects, and silicone chips, and demonstrate a tailor-made patch for body-worn electrophysiological monitoring.
Collapse
Affiliation(s)
- Marta Calisto Freitas
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Afsaneh L Sanati
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Pedro Alhais Lopes
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| | - André F Silva
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| | - Mahmoud Tavakoli
- Soft and Printed Microelectronics Lab, Institute of Systems and Robotics, University of Coimbra, Coimbra, 3030-790, Portugal
| |
Collapse
|