1
|
Su C, Tuan NQ, Li WH, Cheng JH, Jin YY, Hong SK, Lee H, Qader M, Klein L, Shetye G, Pauli GF, Flanzblau SG, Cho SH, Zhao XQ, Suh JW. Enhancing rufomycin production by CRISPR/Cas9-based genome editing and promoter engineering in Streptomyces sp. MJM3502. Synth Syst Biotechnol 2025; 10:421-432. [PMID: 39925944 PMCID: PMC11803874 DOI: 10.1016/j.synbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
Streptomyces sp. MJM3502 is a promising producer of rufomycins, which are a class of potent anti-tuberculosis lead compounds. Although the structure, activity, and mechanism of the main rufomycin 4/6 and its analogs have been extensively studied, a significant gap remains in our understanding of the genome sequence and biosynthetic pathway of Streptomyces sp. MJM3502, and its metabolic engineering has not yet been reported. This study established the genetic manipulation platform for the strain. Using CRISPR/Cas9-based technology to in-frame insert the strong kasO∗p promoter upstream of the rufB and rufS genes of the rufomycin BGC, we increased rufomycin 4/6 production by 4.1-fold and 2.8-fold, respectively. Furthermore, designing recombinant strains by inserting the kasO∗p promoter upstream of the biosynthetic genes encoding cytochrome P450 enzymes led to new rufomycin derivatives. These findings provide the basis for enhancing the production of valuable natural compounds in Streptomyces and offer insights into the generation of novel active natural products via synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Chun Su
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Nguyen-Quang Tuan
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi-Do, 17058, Republic of Korea
- R&D Center, Manbangbio Co. Ltd, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Wen-Hua Li
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jin-Hua Cheng
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Gyeonggi-Do, 17058, Republic of Korea
- Microbio Healthcare Co. Ltd, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Ying-Yu Jin
- R&D Center, Manbangbio Co. Ltd, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| | - Hyun Lee
- Institute for Tuberculosis Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Mallique Qader
- Institute for Tuberculosis Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Larry Klein
- Institute for Tuberculosis Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Gauri Shetye
- Institute for Tuberculosis Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Guido F. Pauli
- Institute for Tuberculosis Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Scott G. Flanzblau
- Institute for Tuberculosis Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Sang-Hyun Cho
- Institute for Tuberculosis Research, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, 60612, United States
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Joo-Won Suh
- Myongji Bioefficacy Research Center, Myongji University, Yongin, Gyeonggi-Do, 17058, Republic of Korea
- Microbio Healthcare Co. Ltd, Yongin, Gyeonggi-Do, 17058, Republic of Korea
| |
Collapse
|
2
|
Weinhäupl K, Meuret L, Desrat S, Roussi F, Morellet N, Beaupierre S, Guillou C, van Heijenoort C, Abian O, Vega S, Wolf I, Akopian T, Krandor O, Rubin E, Velazquez-Campoy A, Gauto D, Fraga H. Identification of new ClpC1-NTD binders for Mycobacterium tuberculosis drug development. Sci Rep 2025; 15:4146. [PMID: 39900984 PMCID: PMC11791199 DOI: 10.1038/s41598-025-87535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
MtbClpC1 is a promising drug target against tuberculosis. Recent studies have shown that several natural product antibiotics targeting the unfoldase N-terminal domain can impair MtbClpC1 function resulting in cell death. While the pharmacological properties of these natural product antibiotics prevent their use in the clinic, similar molecules binding to the same binding pockets can result in new drugs against Mtb. Here we demonstrate that we successfully used in silico screening to identify new ClpC1 N-terminal domain binders with micromolar affinity from a small compound library. In addition, we experimentally demonstrate that the new compounds bind to the same pockets used by the natural product antibiotics and inhibit ClpC1 function.
Collapse
Affiliation(s)
| | - Louis Meuret
- Institut de Chimie des Substances Naturelles (ICSN), Centre national de la recherche scientifique (CNRS) , Gif-Sur-Yvette, France
| | - Sandy Desrat
- Institut de Chimie des Substances Naturelles (ICSN), Centre national de la recherche scientifique (CNRS) , Gif-Sur-Yvette, France
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles (ICSN), Centre national de la recherche scientifique (CNRS) , Gif-Sur-Yvette, France
| | - Nelly Morellet
- Institut de Chimie des Substances Naturelles (ICSN), Centre national de la recherche scientifique (CNRS) , Gif-Sur-Yvette, France
| | - Sandra Beaupierre
- Institut de Chimie des Substances Naturelles (ICSN), Centre national de la recherche scientifique (CNRS) , Gif-Sur-Yvette, France
| | - Catherine Guillou
- Institut de Chimie des Substances Naturelles (ICSN), Centre national de la recherche scientifique (CNRS) , Gif-Sur-Yvette, France
| | - Carine van Heijenoort
- Institut de Chimie des Substances Naturelles (ICSN), Centre national de la recherche scientifique (CNRS) , Gif-Sur-Yvette, France
| | - Olga Abian
- Institute for Health Research Aragon (IIS Aragon), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI) & Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Ian Wolf
- Harvard School of Public Health, Boston, USA
| | | | | | - Eric Rubin
- Harvard School of Public Health, Boston, USA
| | - Adrian Velazquez-Campoy
- Institute for Health Research Aragon (IIS Aragon), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI) & Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | - Diego Gauto
- Institut de Chimie des Substances Naturelles (ICSN), Centre national de la recherche scientifique (CNRS) , Gif-Sur-Yvette, France.
| | - Hugo Fraga
- Institute for Research and Innovation in HealthI3S, Porto, Portugal.
- Biochemistry Department, Medical Faculty, Porto University, Porto, Portugal.
| |
Collapse
|
3
|
George M, Wright GD. Revisiting the potential of natural products in antimycobacterial therapy: advances in drug discovery and semisynthetic solutions. Curr Opin Microbiol 2025; 83:102576. [PMID: 39742555 DOI: 10.1016/j.mib.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/03/2025]
Abstract
Natural products have been pivotal in treating mycobacterial infections with early antibiotics such as streptomycin, forming the foundation of tuberculosis therapy. However, the emergence of multidrug-resistant and extensively drug-resistant Mycobacterium species has intensified the need for novel antimycobacterial agents. In this review, we revisit the historical contributions of natural products to antimycobacterial drug discovery and highlight recent advances in the field. We assess the application of molecular networking and the exploration of unculturable bacteria in identifying new antimycobacterial compounds such as amycobactin and levesquamides. We also highlight the role of semisynthesis in optimizing natural products, exemplified by sequanamycins and spectinomycin analogs that evade M. tuberculosis' intrinsic resistance. Finally, we discuss emerging technologies that are promising to accelerate the discovery and development of next-generation antimycobacterial therapies. Despite ongoing challenges, these innovative approaches offer renewed hope in addressing the growing crisis of drug-resistant mycobacterial infections.
Collapse
Affiliation(s)
- Maya George
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D Wright
- David Braley Centre for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Wang X, Deng Z, Gao J. Exploring the antibiotic potential of cultured 'unculturable' bacteria. Trends Microbiol 2024; 32:124-127. [PMID: 38102034 DOI: 10.1016/j.tim.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
In response to the severe global antibiotic resistance crisis, this forum delves into 'unculturable' bacteria, believed to be a promising source of novel antibiotics. We propose remarkable drug discovery strategies that leverage these bacteria's diversity, aspiring to transform resistance management. The urgent call for new antibiotics accentuates the essentiality of further research.
Collapse
Affiliation(s)
- Xiaozhao Wang
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiangtao Gao
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|