1
|
Guerrero M, Marican A, Rafael D, Andrade F, Moore-Carrasco R, Vijayakumar S, Salinas P, Cabrera-Barjas G, Lara J, Durán-Lara EF. On-demand dual-stimuli-responsive hydrogels for localized and sustained delivery of MP-L [I5R8] to treat bacterial wound infections. Colloids Surf B Biointerfaces 2025; 251:114636. [PMID: 40117802 DOI: 10.1016/j.colsurfb.2025.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
This study presents the development of two novel injectable dual-responsive polyanionic hydrogels (DRPHs) based on N-isopropylacrylamide (NIPAM), incorporating carboxylic acid comonomers for temperature- and pH-responsive drug release. These hydrogels were designed for the sustained and localized delivery of the antimicrobial peptide MP-L [I5R8], targeting multidrug-resistant bacteria (MDRB) in wound infections. The physicochemical characterization confirmed polymer formation and comonomer integration through Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Rheological analysis demonstrated a temperature-dependent sol-gel transition at ∼35°C, making the hydrogels suitable for in situ gelation at physiological conditions. The hydrogels exhibited tunable swelling behavior and a controlled dual-phase release profile of MP-L [I5R8], ensuring both immediate bactericidal activity and prolonged antimicrobial effect. In vitro assays confirmed sustained antimicrobial efficacy against Staphylococcus aureus and Pseudomonas aeruginosa, while biocompatibility tests validated their safety for biomedical applications. An in vivo diabetic wound infection model demonstrated rapid infection clearance, enhanced wound healing, and organized tissue regeneration following treatment with MP-L [I5R8]-loaded DRPHs. These results highlight the potential of dual-stimuli-responsive hydrogels as a next-generation antimicrobial delivery platform for the treatment of chronic infected wounds, such as diabetic foot ulcers.
Collapse
Affiliation(s)
- Marcelo Guerrero
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile; PhD Program in Science, R&D Bioactive Products Department, Chemistry Institute of Natural Resources, University of Talca, Talca, Chile
| | - Adolfo Marican
- Institute of Chemistry of Natural Research, University of Talca, Talca 3460000, Chile
| | - Diana Rafael
- ClinicalBiochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institutof Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron BarcelonaHospital Campus, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, Madrid, Spain; Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain
| | - Fernanda Andrade
- ClinicalBiochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institutof Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron BarcelonaHospital Campus, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, Madrid, Spain; Department of Pharmacy and Pharmaceutical Technology and Physicochemistry, Faculty of Pharmacy and Food Sciences, School of Pharmacy, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Rodrigo Moore-Carrasco
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile
| | - Sekar Vijayakumar
- College of Material Science and Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Paulo Salinas
- Laboratory of Animal & Experimental Morphology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias del Cuidado de la Salud, Universidad San Sebastian Campus Las Tres Pascualas, Lientur 1457, Concepción 4080871, Chile
| | - Juan Lara
- Chile Laboratory Animal Research Facility, Research Direction, University of Talca, Av. Lircay s/n, Talca 3460000, Chile
| | - Esteban F Durán-Lara
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca 3460000, Chile.
| |
Collapse
|
2
|
Rasool N, Thakur Y, Singh Y. Antibacterial Lecithin/Chitosan Nanoparticles for the Sustained Release of Ciprofloxacin to Treat Ocular Bacterial Infections. Chem Asian J 2025; 20:e202400933. [PMID: 39714370 DOI: 10.1002/asia.202400933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Ocular drug-delivery is one of the most challenging areas owing to nature of ocular tissues. Various nanoformulations have been designed and investigated for drug-delivery to achieve high drug bioavailability. The major focus of these preparations available in market is to utilize nanomaterial as drug-carrier only, with less focus on developing functional-nanomaterials, which is a key knowledge gap in the field. To address this, we developed a nanoparticulate system from bioactive-polymers, having intrinsic antimicrobial and mucoadhesiveness, loaded with ciprofloxacin (cipro) to treat ocular bacterial infections. Cipro-loaded lecithin/chitosan nanoparticles were prepared and characterized for their physiochemical properties. They exhibited good drug loading efficiency and showed sustained drug-release for 72 h, with slow release for first 4 h followed by a burst release in phosphate buffered saline and simulated tear fluid. Cipro-loaded nanoparticles were assessed for their antibacterial potential against Staphylococcus aureus (96 %) and Pseudomonas aeruginosa (72 %) using optical density, disc-diffusion method, live-dead assay, and demonstrated promising antibacterial properties. The drug-loaded nanoparticles showed good cytocompatibility (~90 %) towards murine fibroblasts and rabbit corneal cells. Being amphiphilic in nature, the nanoparticles exhibited mucoadhesiveness, hemocompatibility (<4 %) and, thus, proving to be a promising candidate for treating ocular infections. This approach ensures efficient drug delivery and synergic/additive therapeutic effects.
Collapse
Affiliation(s)
- Nahida Rasool
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Yashika Thakur
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Yashveer Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| |
Collapse
|
3
|
Pardo-Rendón AG, Mejía-Méndez JL, López-Mena ER, Bernal-Chávez SA. Development and Evaluation of the Biological Activities of a Plain Mucoadhesive Hydrogel as a Potential Vehicle for Oral Mucosal Drug Delivery. Gels 2024; 10:574. [PMID: 39330176 PMCID: PMC11431386 DOI: 10.3390/gels10090574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
This study aimed to develop HGs based on cationic guar gum (CGG), polyethylene glycol (PEG), propylene glycol (PG), and citric acid (CA) using a 2k factorial experimental design to optimize their properties. HGs were characterized through FTIR and Raman spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The biological activities of HGs were determined by evaluating their mucoadhesive capacity and antibacterial activity in vitro, whereas their toxicity was analyzed using Artemia salina nauplii as an in vivo model. Results revealed that HGs were successfully optimized for their viscosity, pH, and sensory properties, and it was observed that varying concentrations of PEG-75 did not influence them. Through SEM analyses, it was noted that increased levels of PEG-75 resulted in HGs with distinct porosity and textures, whereas FTIR and Raman spectroscopy exhibited representative peaks of the raw materials used during the synthesis process. TGA studies indicated the thermal stability of HGs, as they presented degradation patterns at 100 and 300 °C. The synthesized HGs exhibited similar mucoadhesion kinetic profiles, demonstrating a displacement factor at an equilibrium of 0.57 mm/mg at 5 min. The antibacterial activity of HGs was appraised as poor against Gram-positive and Gram-negative bacteria due to their MIC90 values (>500 μg/mL). Regarding A. salina, treatment with HGs neither decreased their viability nor induced morphological changes. The obtained results suggest the suitability of CGG/PEG HGs for oral mucosa drug delivery and expand the knowledge about their mucoadhesive capacity, antibacterial potential, and in vivo biocompatibility.
Collapse
Affiliation(s)
- Ana G Pardo-Rendón
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Puebla, Mexico
| | - Jorge L Mejía-Méndez
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Puebla, Mexico
- Programa de Edafología, Colegio de Postgraduados, Campus Montecillo, Carr. México Texcoco km 36.4, Montecillo 56230, Mexico
| | - Edgar R López-Mena
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No. 2514, Colonia Nuevo México, Zapopan 45121, Jalisco, Mexico
| | - Sergio A Bernal-Chávez
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, San Andrés Cholula 72810, Puebla, Mexico
| |
Collapse
|
4
|
Summonte S, Sanchez Armengol E, Ricci F, Sandmeier M, Hock N, Güclü-Tuncyüz A, Bernkop-Schnürch A. Phosphatase-degradable nanoparticles providing sustained drug release. Int J Pharm 2024; 654:123983. [PMID: 38460768 DOI: 10.1016/j.ijpharm.2024.123983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
AIM The study aimed to develop enzyme-degradable nanoparticles comprising polyphosphates and metal cations providing sustained release of the antibacterial drug ethacridine (ETH). METHODS Calcium polyphosphate (Ca-PP), zinc polyphosphate (Zn-PP) and iron polyphosphate nanoparticles (Fe-PP NPs) were prepared by co-precipitation of sodium polyphosphate with cations and ETH. Developed nanocarriers were characterized regarding particle size, PDI, zeta potential, encapsulation efficiency and drug loading. Toxicological profile of nanocarriers was assessed via hemolysis assay and cell viability on human blood erythrocytes and HEK-293 cells, respectively. The enzymatic degradation of NPs was evaluated in presence of alkaline phosphatase (ALP) monitoring the release of monophosphate, shift in zeta potential and particle size as well as drug release. The antibacterial efficacy against Escherichia coli was determined via microdilution assay. RESULTS NPs were obtained in a size range between 300 - 480 nm displaying negative zeta potential values. Encapsulation efficiency was in the range of 83.73 %- 95.99 %. Hemolysis assay underlined sufficient compatibility of NPs with blood cells, whereas drug and NPs showed a concentration dependent effect on HEK-293 cells viability. Ca- and Zn-PP NPs exhibited remarkable changes in zeta potential, particle size, monophosphate and drug release upon incubation with ALP, compared to Fe-PP NPs showing only minor differences. The released ETH from Ca- and Zn-PP nanocarriers retained the antibacterial activity against E. coli, whereas no antibacterial effect was observed with Fe-PP NPs. CONCLUSION Polyphosphate nanoparticles cross-linked with divalent cations and ETH hold promise for sustained drug delivery triggered by ALP for parental administration.
Collapse
Affiliation(s)
- Simona Summonte
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Eva Sanchez Armengol
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Fabrizio Ricci
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Matthias Sandmeier
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria
| | - Nathalie Hock
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Ayse Güclü-Tuncyüz
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
| |
Collapse
|