1
|
Huang Kong ED, Lai CW, Juan JC, Pang YL, Khe CS, Badruddin IA, Gapsari F, Anam K. Recent advances in titanium dioxide bio-derived carbon photocatalysts for organic pollutant degradation in wastewater. iScience 2025; 28:112368. [PMID: 40352735 PMCID: PMC12063124 DOI: 10.1016/j.isci.2025.112368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Water pollution from organic pollutants such as dyes and pharmaceuticals poses severe threats to ecosystems and human health, demanding effective remediation strategies. Conventional water treatment methods fall short in eliminating these contaminants, prompting interest in photocatalysis, which uses light energy to degrade pollutants into harmless substances such as carbon dioxide and water. This sustainable approach offers efficient pollutant removal with recyclable photocatalysts but faces challenges such as rapid charge recombination and limited electron-hole migration. Research aims to enhance photocatalytic efficiency under UV, visible, and solar light through metal doping and binary oxide systems, particularly titanium dioxide, which improves charge carrier migration and delays recombination. Coupling titanium dioxide with bio-derived carbon shows promise in enhancing electron-hole separation and visible light absorption. This review explores advances in photocatalyst synthesis, degradation mechanisms, adsorption reactions, and economic value of bioderived photocatalysts, emphasizing the potential of photocatalysis for efficient wastewater treatment.
Collapse
Affiliation(s)
- Ethan Dern Huang Kong
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Mechanical Engineering, Faculty of Engineering, Brawijaya University, MT Haryono 167, Malang 65145, Indonesia
| | - Joon Ching Juan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang, Selangor 43000, Malaysia
| | - Cheng Seong Khe
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Malaysia
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Femiana Gapsari
- Department of Mechanical Engineering, Faculty of Engineering, Brawijaya University, MT Haryono 167, Malang 65145, Indonesia
| | - Khairul Anam
- Department of Mechanical Engineering, Faculty of Engineering, Brawijaya University, MT Haryono 167, Malang 65145, Indonesia
| |
Collapse
|
2
|
Kashi E, Jawad AH, Surip SN, Wu R, ALOthman ZA. Crosslinked chitosan-benzil/microalgae/kronos (titanium dioxide) biocomposite for the removal of brilliant green dye: Response surface methodology optimisation and mechanism. Int J Biol Macromol 2025; 312:144005. [PMID: 40339866 DOI: 10.1016/j.ijbiomac.2025.144005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/26/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
In this study, the adsorptive performance of the hydrothermally crosslinked Chitosan- Benzil/Microalgae/Kronos (TiO2) (Cs/Bz2-Ma-KT) biocomposite was evaluated towards removal of brilliant green (BG) a toxic cationic dye. Box-Behnken-Design from Response Surface Methodology (BBD-RSM) was employed for the design of the experiments, statistical analysis of the variables affecting the adsorption process, and finally for the optimisation of the adsorption parameters. The results revealed that the pH of the adsorption environment has the highest impact on the removal of BG dye due to the electrostatic repulsion and attraction occurring in pH values lower and higher than pHpzc of the adsorbent, respectively. The synthesised Cs/Bz2-Ma-KT exhibited a specific surface area of 1.32 (m2/g) with a pore diameter of 34.42 (nm; pore volume = 0.11 cm3/g) and was categorised as a mesoporous material. The adsorption equilibrium studies revealed that the adsorption of BG dye by Cs/Bz2-Ma-KT happens in a monolayer fashion (best compatibility with the Langmuir isotherm model; R2 = 0.93), while the adsorption process mainly occurs through chemisorption (better compatibility with the PPSO kinetic model). Furthermore, the maximum monolayer adsorption capacity of Cs/Bz2-Ma-KT was found to be 289.2 mg/g, exhibiting a great potential to be employed for the removal of BG dye from effluents. Moreover, the thermodynamic parameters revealed the spontaneity and feasibility of the adsorption process due to the negative values of ΔG, whereas the positive ΔH value signified the endothermic nature of the adsorption process.
Collapse
Affiliation(s)
- Elmira Kashi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - S N Surip
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ruihong Wu
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Deparment of Chemistry, Hengshui University, 053500, Hebei Province, Hengshui, China
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Zheng Y, Sun F, Zeng P, Su Y, Liu G. Constructing of Core-Satellite Structure Bimetallic MOFs for Synergistic Enhanced Adsorption-Photocatalytic Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20966-20976. [PMID: 39319825 DOI: 10.1021/acs.langmuir.4c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Various industries generate a large amount of wastewater, which contains soluble organic compounds that can seriously jeopardize the environment and human health. Therefore, new photocatalytic materials with the function of efficiently degrading pollutants have become a research hotspot. In this research, bimetallic metal-organic frameworks (MOFs) with a core-satellite structure were prepared through a simple one-pot method in the presence of a polyvinylpyrrolidone structure-directing agent and crystal size. Also, the synergy of the adsorption-catalytic properties of the core-satellite structure bimetallic MOFs was achieved via the interaction of aluminum and iron groups. Meanwhile, the type I heterojunction structure based on MIL-53(Al@Fe)-OH realized the effective separation of the photogenerated carriers. Under the synergistic adsorption-catalytic degradation, the degradation efficiency of methylene blue (MB) was nearly 100% after adsorption (of 2 h) and photocatalysis (of 2 h), and the removal rate of MB still reached 90.43% after five cycles. This study provides a new strategy for the construction of bimetallic MOF structures for efficient adsorption-catalyzed degradation of environmental pollutants.
Collapse
Affiliation(s)
- Yaxin Zheng
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Textile Science and Engineering (International institute of silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fei Sun
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Textile Science and Engineering (International institute of silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengjin Zeng
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Textile Science and Engineering (International institute of silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yi Su
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Textile Science and Engineering (International institute of silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guojin Liu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- National Innovation Center of Advanced Dyeing & Finishing Technology, Taian 271000, Shandong, China
| |
Collapse
|
4
|
Wu R, Hapiz A, Musa SA, ALOthman ZA, Sillanpää M, Jawad AH. Hydrothermal fabrication of composite chitosan grafted salicylaldehyde/coal fly ash/algae for malachite green dye removal: A statistical optimization. Int J Biol Macromol 2024; 280:135897. [PMID: 39313051 DOI: 10.1016/j.ijbiomac.2024.135897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/11/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
In this study, chitosan grafted salicylaldehyde/coal fly ash/algae (Chi-SL/CFA/Alg) was synthesized by assistance of hydrothermal process to be an effective adsorbent to remove cationic dye (malachite green: MG) from water. The physicochemical properties of the Chi-SL/CFA/Alg biomaterial were examined using SEM-EDX, pHpzc, specific surface area (BET), and FTIR analyses. The optimization process of the adsorption operation parameters for MG removal by Chi-SL/CFA/Alg were optimized using a Box-Behnken design (BBD). The selected adsorption operation parameters Chi-SL/CFA/Alg dosage (A: 0.02-0.1 g/100 mL), solution pH (B: 4-8), and contact time (C: 20-360 min). Analysis of variance (ANOVA) test was applied to determine the significant interaction between the adsorption operation parameters and to validate BBD output. The adsorption kinetics and isotherms of MG dye by Chi-SL/CFA/Alg were well described by pseudo-second order (PSO) kinetic and Freundlich isotherm model respectively. Thus, the maximum adsorption capacity (qmax) of MG dye by Chi-SL/CFA/Alg was found to be 493.7 mg/g at basic pH environment (pH = 8) and working temperature 25 °C. The adsorption mechanism can be ascribed to various interactions, including hydrogen bonding, π-π interactions, electrostatic attraction, and n-π interactions. Thus, Chi-SL/CFA/Alg can be considered as preferable and potential adsorbent for removing cationic dye from aqueous environment.
Collapse
Affiliation(s)
- Ruihong Wu
- Deparment of Chemistry, Hengshui University, 053500, Hebei Province, Hengshui, China; Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmad Hapiz
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Salis A Musa
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mika Sillanpää
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093 Kuwait, Kuwait; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| |
Collapse
|
5
|
Zhu M, Xiang D, Wang S, Chen Y, Liu X, Zhu R, Ye J, Wang S, Fu L. One-step functionalization of chitosan with rich sulfur and nitrogen adsorption sites for efficient recovery of silver ions from actual wastewater. Int J Biol Macromol 2024; 276:134000. [PMID: 39032878 DOI: 10.1016/j.ijbiomac.2024.134000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The recovery of silver ions from wastewater is of great importance due to their adverse environmental impact and significant economic value. This paper introduces a novel adsorbent (CS-AHMT) that can be easily synthesized via a one-step functionalization of chitosan with 4-Amino-3-hydrazino-1,2,4-triazol-5-thiol to efficiently recover silver ions from actual wastewater. CS-AHMT demonstrated superior adsorption performance, achieving an adsorption capacity of 241.4 mg·g-1 at pH 5 and 318 K, and the adsorption equilibrium was rapidly attained within 60 to 120 min. Kinetic and isotherm studies indicate that the adsorption process conforms to the pseudo-nth-order (PNO) and Sips models, suggesting a monolayer adsorption that incorporates both physical and chemical processes, with internal mass transfer being the primary rate-limiting step. Electrostatic and coordination interactions are primarily involved in the adsorption mechanism of silver ions on CS-AHMT, as further validated by density functional theory (DFT) calculations. The selectivity and practical applicability of CS-AHMT were confirmed in real wastewater containing high concentrations of competing ions. The findings underscore the potential of CS-AHMT as an effective adsorbent for silver ion recovery in wastewater treatment applications.
Collapse
Affiliation(s)
- Manying Zhu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Dawei Xiang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Shuai Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Yuefeng Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Xiang Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Rong Zhu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Jianqiang Ye
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China
| | - Shixing Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China.
| | - Likang Fu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093, China.
| |
Collapse
|
6
|
Sharififard H. A biohybrid nanomaterial of biosynthesized TiO 2 NPs from Mangrove leaf and shrimp shell-based Chitosan: ultrasonic-assisted synthesis and its application for methylene blue removal and COD reduction of real industrial wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1465-1473. [PMID: 38493293 DOI: 10.1080/15226514.2024.2327620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
In the present study, TiO2 NPs (particle size: 25-35 nm) were biosynthesized from the Mangrove leaf extract. These nanoparticles were used to modify chitosan, and Chitosan@TiO2 biohybrid nanomaterial was synthesized and characterized using FTIR, XRD, BET, and, EDX-FE-SEM analyses. The adsorption ability of Chitosan@TiO2 nanomaterial has been investigated for Methylene blue (MB) removal from aqueous solution. The results indicated that the amount of MB removal is high in alkaline pH (optimum pH = 9). The pseudo-second-order model was able to describe the effect of contact time on the adsorption ability. The Langmuir model well described the equilibrium manner, and one gram of Chitosan@TiO2 could attract 416.66 mg of MB. Kinetic data, values of parameters of activation energy (+57.283 kJ/mol), enthalpy (-86.8148 kJ/mol), and Gibbs free energy (-27.999 to -22.8987 kJ/mol) indicate the dominance of chemical adsorption over physical adsorption. The breakthrough curves of 3 adsorption/desorption cycles showed the acceptable ability and reusability of prepared nanomaterial. Synthesized biohybrid nanomaterial can reduce 75% COD and 79% nitrate of the effluent from industrial city no.3 of Yasouj. The results of this research show the high ability of chitosan@TiO2 biohybrid to remove dyes from wastewater and reduce the pollution load of industrial wastewater.
Collapse
|