1
|
Natural and synthetic peptides in the cardiovascular diseases: An update on diagnostic and therapeutic potentials. Arch Biochem Biophys 2018; 662:15-32. [PMID: 30481494 DOI: 10.1016/j.abb.2018.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Several peptides play an important role in physiological and pathological conditions into the cardiovascular system. In addition to well-known vasoactive agents such as angiotensin II, endothelin, serotonin or natriuretic peptides, the vasoconstrictor Urotensin-II (Uro-II) and the vasodilators Urocortins (UCNs) and Adrenomedullin (AM) have been implicated in the control of vascular tone and blood pressure as well as in cardiovascular disease states including congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Therefore these peptides, together with their receptors, become important therapeutic targets in cardiovascular diseases (CVDs). Circulating levels of these agents in the blood are markedly modified in patients with specific CVDs compared with those in healthy patients, becoming also potential biomarkers for these pathologies. This review will provide an overview of current knowledge about the physiological roles of Uro-II, UCN and AM in the cardiovascular system and their implications in cardiovascular diseases. It will further focus on the structural modifications carried out on original peptide sequences in the search of analogues with improved physiochemical properties as well as in the delivery methods. Finally, we have overviewed the possible application of these peptides and/or their precursors as biomarkers of CVDs.
Collapse
|
2
|
Rademaker MT, Richards AM. Urocortins: Actions in health and heart failure. Clin Chim Acta 2017; 474:76-87. [DOI: 10.1016/j.cca.2017.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/04/2017] [Indexed: 01/21/2023]
|
3
|
Urocortin Treatment Improves Acute Hemodynamic Instability and Reduces Myocardial Damage in Post-Cardiac Arrest Myocardial Dysfunction. PLoS One 2016; 11:e0166324. [PMID: 27832152 PMCID: PMC5104489 DOI: 10.1371/journal.pone.0166324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023] Open
Abstract
Aims Hemodynamic instability occurs following cardiac arrest and is associated with high mortality during the post-cardiac period. Urocortin is a novel peptide and a member of the corticotrophin-releasing factor family. Urocortin has the potential to improve acute cardiac dysfunction, as well as to reduce the myocardial damage sustained after ischemia reperfusion injury. The effects of urocortin in post-cardiac arrest myocardial dysfunction remain unclear. Methods and Results We developed a preclinical cardiac arrest model and investigated the effects of urocortin. After cardiac arrest induced by 6.5 min asphyxia, male Wistar rats were resuscitated and randomized to either the urocortin treatment group or the control group. Urocortin (10 μg/kg) was administrated intravenously upon onset of resuscitation in the experimental group. The rate of return of spontaneous circulation (ROSC) was similar between the urocortin group (76%) and the control group (72%) after resuscitation. The left ventricular systolic (dP/dt40) and diastolic (maximal negative dP/dt) functions, and cardiac output, were ameliorated within 4 h after ROSC in the urocortin-treated group compared to the control group (P<0.01). The neurological function of surviving animals was better at 6 h after ROSC in the urocortin-treated group (p = 0.023). The 72-h survival rate was greater in the urocortin-treated group compared to the control group (p = 0.044 by log-rank test). Cardiomyocyte apoptosis was lower in the urocortin-treated group (39.9±8.6 vs. 17.5±4.6% of TUNEL positive nuclei, P<0.05) with significantly increased Akt, ERK and STAT-3 activation and phosphorylation in the myocardium (P<0.05). Conclusions Urocortin treatment can improve acute hemodynamic instability as well as reducing myocardial damage in post-cardiac arrest myocardial dysfunction.
Collapse
|
4
|
Sumii K, Miyake H, Enatsu N, Chiba K, Fujisawa M. Characterization of urocortin as an anti-apoptotic protein in experimental ischemia-reperfusion model of the rat testis. Biochem Biophys Res Commun 2016; 479:387-392. [PMID: 27659706 DOI: 10.1016/j.bbrc.2016.09.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 12/26/2022]
Abstract
The objective of this study was to investigate the role of urocortin in testicular apoptosis using an experimental ischemia-reperfusion rat model. To evaluate the change in urocortin expression and apoptotic status in the testes following ischemia-reperfusion, the left testes of rats were rotated clockwise by 720° for 1 h, and were then harvested at 0, 1, 3, 6 and 24 h after detorsion (n = 5 in each group). A time-dependent increase in the expression levels of urocortin was noted until 6 h after reperfusion, but the expression of urocortin was markedly decreased 24 h after reperfusion. However, a TUNEL assay showed that the proportion of germ cells undergoing apoptosis significantly increased 24 h after reperfusion compared with that of 6 h after reperfusion. To clarify whether or not urocortin directly regulates the testicular apoptosis induced by ischemia-reperfusion, either astressin, an antagonist of urocortin, or normal saline was injected into the rat testes 15 min before detorsion, followed by the testicular torsion. The testes were then removed 3 h after detorsion (n = 5 in each group). The testicular injection of astressin significantly increased the proportion of TUNEL-positive germ cells, and significantly decreased expression of Bcl-2 and Bcl-xL. In addition, the level of phosphorylated ERK 1/2, but not that of phosphorylated Akt, was significantly reduced by the intratesticular administration of astressin. These findings suggest that urocortin may play a cytoprotective role in the germ cells in response to ischemia-reperfusion injury through the activation of major anti-apoptotic proteins, as well as by the mitogen-activated protein kinase signaling pathway activation.
Collapse
Affiliation(s)
- Kenta Sumii
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Hideaki Miyake
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Noritoshi Enatsu
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Koji Chiba
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
5
|
Chronic Urocortin 2 Administration Improves Cardiac Function and Ameliorates Cardiac Remodeling After Experimental Myocardial Infarction. J Cardiovasc Pharmacol 2015; 65:269-75. [DOI: 10.1097/fjc.0000000000000190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Roustit MM, Vaughan JM, Jamieson PM, Cleasby ME. Urocortin 3 activates AMPK and AKT pathways and enhances glucose disposal in rat skeletal muscle. J Endocrinol 2014; 223:143-54. [PMID: 25122003 PMCID: PMC4191181 DOI: 10.1530/joe-14-0181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Insulin resistance (IR) in skeletal muscle is an important component of both type 2 diabetes and the syndrome of sarcopaenic obesity, for which there are no effective therapies. Urocortins (UCNs) are not only well established as neuropeptides but also have their roles in metabolism in peripheral tissues. We have shown recently that global overexpression of UCN3 resulted in muscular hypertrophy and resistance to the adverse metabolic effects of a high-fat diet. Herein, we aimed to establish whether short-term local UCN3 expression could enhance glucose disposal and insulin signalling in skeletal muscle. UCN3 was found to be expressed in right tibialis cranialis and extensor digitorum longus muscles of rats by in vivo electrotransfer and the effects studied vs the contralateral muscles after 1 week. No increase in muscle mass was detected, but test muscles showed 19% larger muscle fibre diameter (P=0.030), associated with increased IGF1 and IGF1 receptor mRNA and increased SER256 phosphorylation of forkhead transcription factor. Glucose clearance into the test muscles after an intraperitoneal glucose load was increased by 23% (P=0.018) per unit mass, associated with increased GLUT1 (34% increase; P=0.026) and GLUT4 (48% increase; P=0.0009) proteins, and significantly increased phosphorylation of insulin receptor substrate-1, AKT, AKT substrate of 160 kDa, glycogen synthase kinase-3β, AMP-activated protein kinase and its substrate acetyl coA carboxylase. Thus, UCN3 expression enhances glucose disposal and signalling in muscle by an autocrine/paracrine mechanism that is separate from its pro-hypertrophic effects, implying that such a manipulation may have promised for the treatment of IR syndromes including sarcopaenic obesity.
Collapse
Affiliation(s)
- Manon M Roustit
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of London, Royal College Street, London NW1 0TU, UKLaboratory of Neuronal Structure and FunctionSalk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USAQueen's Medical Research InstituteCentre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Joan M Vaughan
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of London, Royal College Street, London NW1 0TU, UKLaboratory of Neuronal Structure and FunctionSalk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USAQueen's Medical Research InstituteCentre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Pauline M Jamieson
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of London, Royal College Street, London NW1 0TU, UKLaboratory of Neuronal Structure and FunctionSalk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USAQueen's Medical Research InstituteCentre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mark E Cleasby
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of London, Royal College Street, London NW1 0TU, UKLaboratory of Neuronal Structure and FunctionSalk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USAQueen's Medical Research InstituteCentre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
7
|
Targeting urocortin signaling pathways to enhance cardioprotection: is it time to move from bench to bedside? Cardiovasc Drugs Ther 2014; 27:451-63. [PMID: 23824484 DOI: 10.1007/s10557-013-6468-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite the exponential growth in medical knowledge, cardiovascular diseases (CVDs) contribute to more than one-third of worldwide morbidity and mortality. A range of therapies already exist for established CVDs, although there is significant interest in further understanding their pathogenesis. The urocortins (Ucns) are peptide members of the corticotrophin-releasing factor family, a group of evolutionary conserved peptides with homologues in fish, amphibians and mammals and considered to play a pivotal role in energy homeostasis and local tissue repair. A number of preclinical studies in vitro, in-vivo and ex-vivo have defined a multifaceted effect of Ucns on the cardiovascular system. Different G-protein coupled signaling and protein-kinase pathways have been shown to be activated by Ucns, together with different transcriptional and translational effects, all of which preferentially converge on the mitochondria, where the modulation of apoptosis is considered their principal action. It has been demonstrated in experimental models, and consequentially suggested in human diseases, that Ucn-mediated inhibition of apoptosis can be exploited for the improvement of both therapeutic and preventative strategies against CVDs. Specifically, some unavoidable iatrogenic ischemia/reperfusion (I/R) injuries, e.g. during cardiac surgery or percutaneous coronary angioplasty, may greatly benefit from the anti-apoptotic effect of Ucns. However, few studies on the topic have been employed in humans to date. Therefore, this review will focus on the different intra-cellular mechanisms of action of Urocortins, and detail the different Ucn-mediated pathways identified so far. It will also highlight the limited evidence already existing in human clinical and surgical settings, as well as emphasize the potential uses of Ucns in human cardiac pathology.
Collapse
|
8
|
Graham CE, Basappa J, Turcan S, Vetter DE. The cochlear CRF signaling systems and their mechanisms of action in modulating cochlear sensitivity and protection against trauma. Mol Neurobiol 2011; 44:383-406. [PMID: 21909974 DOI: 10.1007/s12035-011-8203-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/31/2011] [Indexed: 12/19/2022]
Abstract
A key requirement for encoding the auditory environment is the ability to dynamically alter cochlear sensitivity. However, merely attaining a steady state of maximal sensitivity is not a viable solution since the sensory cells and ganglion cells of the cochlea are prone to damage following exposure to loud sound. Most often, such damage is via initial metabolic insult that can lead to cellular death. Thus, establishing the highest sensitivity must be balanced with protection against cellular metabolic damage that can lead to loss of hair cells and ganglion cells, resulting in loss of frequency representation. While feedback mechanisms are known to exist in the cochlea that alter sensitivity, they respond only after stimulus encoding, allowing potentially damaging sounds to impact the inner ear at times coincident with increased sensitivity. Thus, questions remain concerning the endogenous signaling systems involved in dynamic modulation of cochlear sensitivity and protection against metabolic stress. Understanding endogenous signaling systems involved in cochlear protection may lead to new strategies and therapies for prevention of cochlear damage and consequent hearing loss. We have recently discovered a novel cochlear signaling system that is molecularly equivalent to the classic hypothalamic-pituitary-adrenal (HPA) axis. This cochlear HPA-equivalent system functions to balance auditory sensitivity and susceptibility to noise-induced hearing loss, and also protects against cellular metabolic insults resulting from exposures to ototoxic drugs. We review the anatomy, physiology, and cellular signaling of this system, and compare it to similar signaling in other organs/tissues of the body.
Collapse
Affiliation(s)
- Christine E Graham
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
9
|
Emeto TI, Moxon JV, Rush C, Woodward L, Golledge J. Relevance of urocortins to cardiovascular disease. J Mol Cell Cardiol 2011; 51:299-307. [PMID: 21689660 DOI: 10.1016/j.yjmcc.2011.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/26/2011] [Accepted: 06/02/2011] [Indexed: 11/19/2022]
Abstract
Acquired cardiovascular diseases such as coronary heart disease, peripheral artery disease and related vascular problems contribute to more than one-third of worldwide morbidity and mortality. In many instances, particularly in the under developed world, cardiovascular diseases are diagnosed at a late stage limiting the scope for improving outcomes. A range of therapies already exist for established cardiovascular disease, although there is significant interest in further understanding disease pathogenesis in order to improve diagnosis and achieve primary and secondary therapeutic goals. The urocortins are a group of recently defined peptide members of the corticotrophin-releasing factor family. Previous pre-clinical work and human association studies suggest that urocortins have potential to exert some beneficial and other detrimental effects on the heart and major blood vessels. More current evidence however favours beneficial effects of urocortins, for example these peptides have been shown to inhibit production of reactive oxygen species and vascular cell apoptosis, and thus may have potential to antagonise the progression of cardiovascular disease. This review summarises published data on the potential role of urocortins in cardiovascular disease.
Collapse
Affiliation(s)
- Theophilus I Emeto
- Vascular Biology Unit, School of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | | | | | | | | |
Collapse
|