1
|
Guo M, Xia Z, Hong Y, Ji H, Li F, Liu W, Li S, Xin H, Tan K, Lian Z. The TFPI2-PPARγ axis induces M2 polarization and inhibits fibroblast activation to promote recovery from post-myocardial infarction in diabetic mice. J Inflamm (Lond) 2023; 20:35. [PMID: 37915070 PMCID: PMC10621166 DOI: 10.1186/s12950-023-00357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Diabetes mellitus is one of the causes of poor ventricular remodelling and poor cardiac recovery after myocardial infarction (MI). We previously reported that tissue factor pathway inhibitor-2 (TFPI2) was downregulated in response to hyperglycaemia and that it played a pivotal role in extracellular matrix (ECM) degradation and cell migration. Nonetheless, the function and mechanism of TFPI2 in post-MI remodelling under diabetic conditions remain unclear. Therefore, in the present study, we investigated the role of TFPI2 in post-MI effects in a diabetic mouse model. RESULTS TFPI2 expression was markedly decreased in the infarcted myocardium of diabetic MI mice compared with that in non-diabetic mice. TFPI2 knockdown in the MI mouse model promoted fibroblast activation and migration as well as matrix metalloproteinase (MMP) expression, leading to disproportionate fibrosis remodelling and poor cardiac recovery. TFPI2 silencing promoted pro-inflammatory M1 macrophage polarization, which is consistent with the results of TFPI2 downregulation and M1 polarization under diabetic conditions. In contrast, TFPI2 overexpression in diabetic MI mice protected against adverse cardiac remodelling and functional deterioration. TFPI2 overexpression also inhibited MMP2 and MMP9 expression and attenuated fibroblast activation and migration, as well as excessive collagen production, in the infarcted myocardium of diabetic mice. TFPI2 promoted an earlier phenotype transition of pro-inflammatory M1 macrophages to reparative M2 macrophages via activation of peroxisome proliferator-activated receptor gamma. CONCLUSIONS This study highlights TFPI2 as a promising therapeutic target for early resolution of post-MI inflammation and disproportionate ECM remodelling under diabetic conditions.
Collapse
Affiliation(s)
- Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Zongyi Xia
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Yefeng Hong
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Hongwei Ji
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Fuhai Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Wenheng Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Shaohua Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China
| | - Kai Tan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China.
| | - Zhexun Lian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong, China.
| |
Collapse
|
2
|
Wang ZY, Guo MQ, Cui QK, Yuan H, Shan-Ji Fu, Liu B, Xie F, Qiao W, Cheng J, Wang Y, Zhang MX. PARP1 deficiency protects against hyperglycemia-induced neointimal hyperplasia by upregulating TFPI2 activity in diabetic mice. Redox Biol 2021; 46:102084. [PMID: 34364219 PMCID: PMC8353360 DOI: 10.1016/j.redox.2021.102084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/09/2022] Open
Abstract
Diabetes mellitus (DM) promotes neointimal hyperplasia, characterized by dysregulated proliferation and accumulation of vascular smooth muscle cells (VSMCs), leading to occlusive disorders, such as atherosclerosis and stenosis. Poly (ADP-ribose) polymerase 1 (PARP1), reported as a crucial mediator in tumor proliferation and transformation, has a pivotal role in DM. Nonetheless, the function and potential mechanism of PARP1 in diabetic neointimal hyperplasia remain unclear. In this study, we constructed PARP1 conventional knockout (PARP1−/−) mice, and ligation of the left common carotid artery was performed to induce neointimal hyperplasia in Type I diabetes mellitus (T1DM) mouse models. PARP1 expression in the aorta arteries of T1DM mice increased significantly and genetic deletion of PARP1 showed an inhibitory effect on the neointimal hyperplasia. Furthermore, our results revealed that PARP1 enhanced diabetic neointimal hyperplasia via downregulating tissue factor pathway inhibitor (TFPI2), a suppressor of vascular smooth muscle cell proliferation and migration, in which PARP1 acts as a negative transcription factor augmenting TFPI2 promoter DNA methylation. In conclusion, these results suggested that PARP1 accelerates the process of hyperglycemia-induced neointimal hyperplasia via promoting VSMCs proliferation and migration in a TFPI2 dependent manner.
Collapse
Affiliation(s)
- Zhao-Yang Wang
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Meng-Qi Guo
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qing-Ke Cui
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shan-Ji Fu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Bin Liu
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Xie
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wen Qiao
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Cheng
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Wang
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Ming-Xiang Zhang
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Zhao Y, Chen W, Liu Y, Li H, Chi J, Chang Q, Shen L, Yan R, Li J, Yin X, Fu Y. Promoting plaque stability by gene silencing of monocyte chemotactic protein-3 or overexpression of tissue factor pathway inhibitor in ApoE-/- mice. J Drug Target 2021; 29:669-675. [PMID: 33472448 DOI: 10.1080/1061186x.2021.1878363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chemokines may promote the formation and instability of atherosclerotic plaque, which is the most common cause of acute coronary syndrome. The aim of this study was to clarify the function of monocyte chemotactic protein-3 (MCP-3) in the stability of atherosclerotic plaque, to determine the role of tissue factor pathway inhibitor (TFPI) on the development and stability of atherosclerotic plaques, and to further elucidate the anti-atherosclerotic mechanism of TFPI with the emphasis on chemokine MCP-3. We constructed an adenovirus-mediated shRNA against mouse MCP-3 (Ad-MCP-3-shRNA) and an adenovirus-containing TFPI (Ad-TFPI), and tranferred them in a model of vulnerable plaque in ApoE-/- mice respectively. Here, we reported that MCP-3-shRNA and TFPI could both reduce the plaque area and decrease the content of lipids and macrophages, on the contrary, the fibrous cap thickness and content of collagen and smooth muscle cells were increased. In addition, the expression of MCP-3 and CC chemokine receptor 2 (CCR2) was decreased by TFPI transfer. These data provide the first in vivo evidence that MCP-3 is a major contributor to the unstability of atherosclerotic plaque and TFPI may exert its anti-atherosclerotic effects and promote stabilisation of plaque at least partly through inhibiting MCP-3/CCR2 pathway, which may be a new therapeutic method for atherosclerosis.
Collapse
Affiliation(s)
- Yong Zhao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjia Chen
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Li
- Department of Cardiology, The Fifth Hospital in Harbin, Harbin, China
| | - Jinyu Chi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing Chang
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, China
| | - Li Shen
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Runan Yan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiashu Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinhua Yin
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Fu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Grover SP, Mackman N. Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis 2020; 307:80-86. [PMID: 32674807 DOI: 10.1016/j.atherosclerosis.2020.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that is characterized by the formation of lipid rich plaques in the wall of medium to large sized arteries. Atherothrombosis represents the terminal manifestation of this pathology in which atherosclerotic plaque rupture or erosion triggers the formation of occlusive thrombi. Occlusion of arteries and resultant tissue ischemia in the heart and brain causes myocardial infarction and stroke, respectively. Tissue factor (TF) is the receptor for the coagulation protease factor VIIa, and formation of the TF:factor VIIa complex triggers blood coagulation. TF is expressed at high levels in atherosclerotic plaques by both macrophage-derived foam cells and vascular smooth muscle cells, as well as extracellular vesicles derived from these cells. Importantly, TF mediated activation of coagulation is critically important for arterial thrombosis in the setting of atherosclerotic disease. The major endogenous inhibitor of the TF:factor VIIa complex is TF pathway inhibitor 1 (TFPI-1), which is also present in atherosclerotic plaques. In mouse models, increased or decreased expression of TFPI-1 has been found to alter atherosclerosis. This review highlights the contribution of TF-dependent activation of coagulation to atherthrombotic disease.
Collapse
Affiliation(s)
- Steven P Grover
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Yuan HQ, Hao YM, Ren Z, Gu HF, Liu FT, Yan BJ, Qu SL, Tang ZH, Liu LS, Chen DX, Jiang ZS. Tissue factor pathway inhibitor in atherosclerosis. Clin Chim Acta 2019; 491:97-102. [PMID: 30695687 DOI: 10.1016/j.cca.2019.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) reduces the development of atherosclerosis by regulating tissue factor (TF) mediated coagulation pathway. In this review, we focus on recent findings on the inhibitory effects of TFPI on endothelial cell activation, vascular smooth muscle cell (VSMC) proliferation and migration, inflammatory cell recruitment and extracellular matrix which are associated with the development of atherosclerosis. Meanwhile, we are also concerned about the impact of TFPI levels and genetic polymorphisms on clinical atherogenesis. This article aims to explain the mechanism in inhibiting the development of atherosclerosis and clinical effects of TFPI, and provide new ideas for the clinical researches and mechanism studies of atherothrombosis.
Collapse
Affiliation(s)
- Hou-Qin Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Ya-Meng Hao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Hong-Feng Gu
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Feng-Tao Liu
- Center of Functional Laboratory, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 42100, PR China
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Da-Xing Chen
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
6
|
Zhou H, Che Y, Fu X, Wei H, Gao X, Chen Y, Zhang S. Interaction between tissue factor pathway inhibitor-2 gene polymorphisms and environmental factors associated with coronary atherosclerosis in a Chinese Han. J Thromb Thrombolysis 2018; 47:67-72. [PMID: 30343349 DOI: 10.1007/s11239-018-1755-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To investigate the association of single nucleotide polymorphisms (SNPs) within tissue factor pathway inhibitor-2 (TFPI-2) gene polymorphisms and additional gene-environment interaction with coronary atherosclerosis risk. Generalized multifactor dimensionality reduction (GMDR) was used to screen the best interaction combination among 4 SNPs, smoking and alcohol drinking. Logistic regression was performed to investigate association between 4 SNPs within TFPI-2 gene and coronary atherosclerosis risk. Coronary atherosclerosis risk was significantly higher in carriers with the A allele of rs34489123 within TFPI-2 gene than those with GG genotype (GA+AA versus GG), adjusted OR (95% CI) = 1.70 (1.20-2.31), and was also higher in carriers with the G allele of rs4264 within TFPI-2 gene than those with AA genotype (AG+GG versus AA), adjusted OR (95% CI) = 1.62 (1.21-2.11). GMDR model shown the best models for gene-environment interaction were rs34489123 and smoking after adjusting the covariates, which scored 10 out of 10 for cross-validation consistency and 0.0010 for the sign test. Heavy LD was found for SNPs rs34489123 and rs59805398 (D' value was more than 0.8). Compared to control individuals, the AG haplotypes appeared to be significantly associated with increased coronary atherosclerosis risk, OR (95% CI) = 1.73 (1.22-2.32). We found that the A allele of rs34489123 and the G allele of rs4264 within TFPI-2 gene, interaction between rs34489123 and smoking and AG haplotypes were all associated with increased coronary atherosclerosis risk.
Collapse
Affiliation(s)
- Hairong Zhou
- Department of General Medicine, Longhua District Central Hospital, Shenzhen, 518110, China
| | - Yanjuan Che
- Department of Cardiovascular Medicine, Mudanjiang Second People's Hospital, Mudanjiang, 15700, China
| | - Xiuhua Fu
- Department of Cardiovascular Medicine, Mudanjiang Second People's Hospital, Mudanjiang, 15700, China.
| | - Hong Wei
- Department of Cardiovascular Medicine, Mudanjiang Second People's Hospital, Mudanjiang, 15700, China
| | - Xiuying Gao
- Department of Cardiovascular Medicine, Mudanjiang Second People's Hospital, Mudanjiang, 15700, China
| | - Yanxuan Chen
- Department of General Medicine, Longhua District Central Hospital, Shenzhen, 518110, China
| | - Shaopeng Zhang
- Department of General Medicine, Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
7
|
Seifert R, Kuhlmann MT, Eligehausen S, Kiefer F, Hermann S, Schäfers M. Molecular imaging of MMP activity discriminates unstable from stable plaque phenotypes in shear-stress induced murine atherosclerosis. PLoS One 2018; 13:e0204305. [PMID: 30304051 PMCID: PMC6179381 DOI: 10.1371/journal.pone.0204305] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose As atherosclerotic plaque ruptures are the primary cause of ischaemic events, their preventive identification by imaging remains a clinical challenge. Matrix metalloproteinases (MMP) are involved in plaque progression and destabilisation and are therefore promising targets to characterize rupture-prone unstable plaques. This study aims at evaluating MMP imaging to discriminate unstable from stable plaque phenotypes. Methods ApoE deficient mice (ApoE-/-) on a high cholesterol diet underwent implantation of a tapered cuff around the right common carotid artery (CCA) inducing a highly inflamed atherosclerotic plaque upstream (US) and a more stable plaque phenotype downstream (DS) of the cuff. 8 weeks after surgery, the MMP inhibitor-based photoprobe Cy5.5-AF443 was administered i.v. 3h prior to in situ and ex vivo fluorescence reflectance imaging of the CCAs. Thereafter, CCAs were analysed regarding plaque size, presence of macrophages, and MMP-2 and MMP-9 concentrations by immunohistochemistry and ELISA. Results We found a significantly higher uptake of Cy5.5-AF443 in US as compared to DS plaques in situ (1.29 vs. 1.06 plaque-to-background ratio; p<0.001), which was confirmed by ex vivo measurements. Immunohistochemistry revealed a higher presence of macrophages, MMP-2 and MMP-9 in US compared to DS plaques. Accordingly, MMP-2 concentrations were significantly higher in US plaques (47.2±7.6 vs. 29.6±4.6 ng/mg; p<0.05). Conclusions In the ApoE-/- cuff model MMP-2 and MMP-9 activities are significantly higher in upstream low shear stress-induced unstable atherosclerotic plaques as compared to downstream more stable plaque phenotypes. MMP inhibitor-based fluorescence molecular imaging allows visualization of these differences in shear stress-induced atherosclerosis.
Collapse
Affiliation(s)
- Robert Seifert
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- * E-mail:
| | - Michael T. Kuhlmann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Sarah Eligehausen
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- DFG EXC 1003 Cluster of Excellence ‘Cells in Motion’, University of Münster, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- DFG EXC 1003 Cluster of Excellence ‘Cells in Motion’, University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- DFG EXC 1003 Cluster of Excellence ‘Cells in Motion’, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Kwan STC, King JH, Grenier JK, Yan J, Jiang X, Roberson MS, Caudill MA. Maternal Choline Supplementation during Normal Murine Pregnancy Alters the Placental Epigenome: Results of an Exploratory Study. Nutrients 2018; 10:nu10040417. [PMID: 29597262 PMCID: PMC5946202 DOI: 10.3390/nu10040417] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
The placental epigenome regulates processes that affect placental and fetal development, and could be mediating some of the reported effects of maternal choline supplementation (MCS) on placental vascular development and nutrient delivery. As an extension of work previously conducted in pregnant mice, the current study sought to explore the effects of MCS on various epigenetic markers in the placenta. RNA and DNA were extracted from placentas collected on embryonic day 15.5 from pregnant mice fed a 1X or 4X choline diet, and were subjected to genome-wide sequencing procedures or mass-spectrometry-based assays to examine placental imprinted gene expression, DNA methylation patterns, and microRNA (miRNA) abundance. MCS yielded a higher (fold change = 1.63-2.25) expression of four imprinted genes (Ampd3, Tfpi2, Gatm and Aqp1) in the female placentas and a lower (fold change = 0.46-0.62) expression of three imprinted genes (Dcn, Qpct and Tnfrsf23) in the male placentas (false discovery rate (FDR) ≤ 0.05 for both sexes). Methylation in the promoter regions of these genes and global placental DNA methylation were also affected (p ≤ 0.05). Additionally, a lower (fold change = 0.3; Punadjusted = 2.05 × 10-4; FDR = 0.13) abundance of miR-2137 and a higher (fold change = 1.25-3.92; p < 0.05) expression of its target genes were detected in the 4X choline placentas. These data demonstrate that the placental epigenome is responsive to maternal choline intake during murine pregnancy and likely mediates some of the previously described choline-induced effects on placental and fetal outcomes.
Collapse
Affiliation(s)
| | - Julia H King
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Jennifer K Grenier
- RNA Sequencing Core, Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Jian Yan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Xinyin Jiang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
- Department of Health and Nutrition Sciences, Brooklyn College, Brooklyn, NY 11210, USA.
| | - Mark S Roberson
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
9
|
Hypomethylation of tissue factor pathway inhibitor 2 in human placenta of preeclampsia. Thromb Res 2017; 152:7-13. [PMID: 28208084 DOI: 10.1016/j.thromres.2017.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/23/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To investigate the expression, DNA methylation status and its regulatory mechanism of tissue factor pathway inhibitor 2 (TFPI-2) in human placenta tissues of preeclampsia (PE). MATERIAL AND METHODS We studied the mRNA and protein expression and the promoter methylation levels of TFPI-2 in the PE placentas compared with those in the normal pregnant (NP) women. Quantitative real-time polymerase chain reaction, immunohistochemistry, western blot, and Sequenom MassARRAY were used for placenta tissue detection. RESULTS The expressions of TFPI-2 mRNA and protein were significantly elevated in the PE placentas when compared with those in the NP ones (P<0.05). Hypomethylation of the TFPI-2 promoter was detected both in PE patients and NP women, with a significant decrease in PE placentas (P=0.005). The methylation level was significantly decreased at CpG_6 (-168 to -167), CpG_15 (-98 to -97) and CpG_18.19 (-68 to -65) in PE patients than that in normal placentas (P<0.05). However, the expression of DNMT-1 didn't show significant difference between the two groups (P>0.05). CONCLUSION Over-expression of TFPI-2 and aberrant promoter mythylation status presented in the PE placentas, suggesting that epigenetic mechanism might contribute to the pathogenesis of PE.
Collapse
|
10
|
Hong J, Liu R, Chen L, Wu B, Yu J, Gao W, Pan J, Luo X, Shi H. Conditional knockout of tissue factor pathway inhibitor 2 in vascular endothelial cells accelerates atherosclerotic plaque development in mice. Thromb Res 2015; 137:148-156. [PMID: 26603320 DOI: 10.1016/j.thromres.2015.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Tissue factor pathway inhibitor-2 (TFPI-2) regulates matrix metalloproteinases activation and extracellular matrix degradation. Over-expression of TFPI-2 enhances atherosclerotic plaque stability. The aim of this study is to investigate the effect of conditional knockout (KO) of TFPI-2 in vascular endothelial cells on the initiation and development of atherosclerotic plaque. METHODS A Cre/mloxP conditional KO system and Tek-Cre mice were used to generate offsprings with monoallelic deletion of the TFPI-2 gene in endothelial cells. TFPI-2(fl/+)/Tek-Cre mice, TFPI-2(fl/+) mice and ApoE(-/-) mice (n=6 for each group) were included. Arteries were obtained. HE, EVG and anti-α-SMA staining were used to examine the morphology of vessel and plaque. Protein expression and phosphorylation were detected by Western blot or immunohistochemistry. RESULTS TFPI-2(fl/+)/Tek-Cre mice were generated. TFPI-2 level decreased to 40.68% in TFPI-2(fl/+)/Tek-Cre group. TFPI-2(fl/+)/Tek-Cre developed plaques when no plaque was found in TFPI-2(fl/+) mice. Compared with ApoE(-/-) group, TFPI-2(fl/+)/Tek-Cre group has smaller plaque area, decreased lipid content and less buried fibrous cap layers. MMP-2 and MMP-9 in TFPI-2(fl/+)/Tek-Cre group was higher than in TFPI-2(fl/+)group. The phosphorylation of PPAR-α and PPAR-γ was decreased in TFPI-2(fl/+)/Tek-Cre group. CONCLUSIONS A novel mouse model is presented and can be used to investigate the role of TFPI-2 in the process of atherosclerosis. Our findings suggest that monoallelic deletion of TFPI-2 gene in vascular endothelial cells leads to significant downregulation of TFPI-2. TFPI-2 deficiency may accelerate initiation of atherosclerotic lesion in mice. Elevated MMP-2 and 9 and decreased phosphorylation of PPAR-α and PPAR-γ may contribute to this phenotype.
Collapse
Affiliation(s)
- Jin Hong
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Rongle Liu
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Lewen Chen
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Bangwei Wu
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Jia Yu
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Junjie Pan
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China.
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China.
| | - Haiming Shi
- Department of Cardiology, Huashan Hospital, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| |
Collapse
|
11
|
Yu J, Liu RL, Luo XP, Shi HM, Ma D, Pan JJ, Ni HC. Tissue Factor Pathway Inhibitor-2 Gene Polymorphisms Associate With Coronary Atherosclerosis in Chinese Population. Medicine (Baltimore) 2015; 94:e1675. [PMID: 26496276 PMCID: PMC4620828 DOI: 10.1097/md.0000000000001675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) may play critical roles in the pathogenesis of atherosclerosis. In this study, we aimed to investigate the association between TFPI-2 gene polymorphisms and coronary atherosclerosis.Four hundred and seven patients with coronary atherosclerosis and 306 individuals with normal coronary artery were enrolled in the present study. Nine single-nucleotide polymorphisms (SNPs) (rs3763473, rs59805398, rs60215632, rs59999573, rs59740167, rs34489123, rs4517, rs4264, and rs4271) were detected with polymerase chain reaction-direct sequencing method. Severity of coronary atherosclerosis was assessed by Gensini score. After the baseline investigation, patients with coronary atherosclerosis were followed up for incidence of cardiovascular events (CVEs).Eight SNPs were in accordance with the Hardy-Weinberg equilibrium, and 8 haplotypes were constructed based on rs59999573, rs59740167, and rs34489123 after linkage disequilibrium and haplotype analysis. Two SNPs (rs59805398 and rs34489123) and 5 haplotypes correlated with coronary atherosclerosis even after adjustment by Gensini score. At follow-up (median 53 months, range 1-60 months), 85 patients experienced CVE. However, there was no strong association between the gene polymorphisms and the occurrence of CVE.Tissue factor pathway inhibitor-2 gene polymorphisms were associated with coronary atherosclerosis in the Chinese population, suggesting that the information about TFPI-2 gene polymorphisms was useful for assessing the risk of developing coronary atherosclerosis, but there was not enough evidence showing it could predict occurrence of CVE.
Collapse
Affiliation(s)
- Jia Yu
- From the Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China (JY, R-IL, X-PL, H-MS, J-JP, H-CN); and Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, 200032, China (DM)
| | | | | | | | | | | | | |
Collapse
|
12
|
Vadivel K, Ponnuraj SM, Kumar Y, Zaiss AK, Bunce MW, Camire RM, Wu L, Evseenko D, Herschman HR, Bajaj MS, Bajaj SP. Platelets contain tissue factor pathway inhibitor-2 derived from megakaryocytes and inhibits fibrinolysis. J Biol Chem 2014; 289:31647-61. [PMID: 25262870 DOI: 10.1074/jbc.m114.569665] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) is a homologue of TFPI-1 and contains three Kunitz-type domains and a basic C terminus region. The N-terminal domain of TFPI-2 is the only inhibitory domain, and it inhibits plasma kallikrein, factor XIa, and plasmin. However, plasma TFPI-2 levels are negligible (≤20 pM) in the context of influencing clotting or fibrinolysis. Here, we report that platelets contain significant amounts of TFPI-2 derived from megakaryocytes. We employed RT-PCR, Western blotting, immunohistochemistry, and confocal microscopy to determine that platelets, MEG-01 megakaryoblastic cells, and bone marrow megakaryocytes contain TFPI-2. ELISA data reveal that TFPI-2 binds factor V (FV) and partially B-domain-deleted FV (FV-1033) with K(d) ~9 nM and binds FVa with K(d) ~100 nM. Steady state analysis of surface plasmon resonance data reveal that TFPI-2 and TFPI-1 bind FV-1033 with K(d) ~36-48 nM and bind FVa with K(d) ~252-456 nM. Further, TFPI-1 (but not TFPI-1161) competes with TFPI-2 in binding to FV. These data indicate that the C-terminal basic region of TFPI-2 is similar to that of TFPI-1 and plays a role in binding to the FV B-domain acidic region. Using pull-down assays and Western blots, we show that TFPI-2 is associated with platelet FV/FVa. TFPI-2 (~7 nM) in plasma of women at the onset of labor is also, in part, associated with FV. Importantly, TFPI-2 in platelets and in plasma of pregnant women inhibits FXIa and tissue-type plasminogen activator-induced clot fibrinolysis. In conclusion, TFPI-2 in platelets from normal or pregnant subjects and in plasma from pregnant women binds FV/Va and regulates intrinsic coagulation and fibrinolysis.
Collapse
Affiliation(s)
| | | | - Yogesh Kumar
- From the UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery
| | - Anne K Zaiss
- the Department of Molecular and Medical Pharmacology
| | - Matthew W Bunce
- the Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rodney M Camire
- the Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ling Wu
- From the UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery
| | - Denis Evseenko
- From the UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery
| | - Harvey R Herschman
- the Department of Molecular and Medical Pharmacology, the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | - Madhu S Bajaj
- the Department of Medicine, Division of Pulmonology and Critical Care, and
| | - S Paul Bajaj
- From the UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| |
Collapse
|