1
|
Akçay S, Gurkok-Tan T, Ekici S. Identification of key genes in immune-response post-endurance run in horses. J Equine Vet Sci 2025; 149:105418. [PMID: 40174711 DOI: 10.1016/j.jevs.2025.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Intense physical activity in endurance horses triggers complex immune and inflammatory responses, yet the molecular mechanisms underlying these adaptations remain unclear. This study investigated immune-related transcriptomic changes following a 160 km endurance ride, focusing on sex-based differences. Using a bioinformatics approach, differentially expressed genes (DEGs), pathways, microRNAs (miRNAs), and transcription factors (TFs) were analyzed before (T0) and after (T1) the ride. A protein-protein interaction (PPI) analysis was conducted to identify key regulatory genes. Pathway enrichment analysis revealed significant activation of immune-regulatory and ribosomal pathways. Notably, TLR4, CXCL8, and CCL5 were identified as key hub genes involved in immune modulation post-exercise. Comparisons between female (FT1 vs FT0) and gelding (GT1 vs GT0) horses revealed distinct molecular responses. Female horses exhibited upregulation of ribosomal protein genes, suggesting enhanced protein synthesis and muscle recovery. In contrast, geldings showed increased expression of inflammatory and stress-related genes, indicating a heightened immune response. Notably, sex-based differences were observed, with FT1 vs FT0 and GT1 vs GT0 comparisons revealing distinct KEGG pathway enrichments. Additionally, miRNA and TF analyses revealed regulatory elements influencing endurance-related immune responses. Our findings demonstrated sex-specific molecular mechanisms underlying endurance exercise adaptation, with females prioritizing protein synthesis and recovery, while geldings exhibit stronger inflammatory responses and stress-related pathways. This study provides critical insights into how sex influences exercise physiology at the transcriptomic level, with potential applications in training and recovery strategies for endurance horses.
Collapse
Affiliation(s)
- S Akçay
- Department of Molecular Biology of Genetics, Kırşehir Ahi Evran University, Bagbaşı, 40100, Kırşehir Turkey
| | - T Gurkok-Tan
- Department of Field Crops, Food and Agriculture Vocational School, Cankiri Karatekin University, Merkez, 18100, Çankırı, Turkey
| | - S Ekici
- Veterinary Control Central Research Institute, Keçiören, 06100, Ankara, Turkey.
| |
Collapse
|
2
|
Cui F, Mi H, Wang R, Du Y, Li F, Chang S, Su Y, Liu A, Shi M. The effect of chronic intermittent hypobaric hypoxia improving liver damage in metabolic syndrome rats through ferritinophagy. Pflugers Arch 2023; 475:1251-1263. [PMID: 37747537 DOI: 10.1007/s00424-023-02860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Studies have confirmed that hepatic iron overload is one of the important factors causing liver damage in the metabolic syndrome (MS). As a special form of autophagy, ferritinophagy is involved in the regulation of iron metabolism. Our previous studies have shown that chronic intermittent hypobaric hypoxia (CIHH) can improve the iron metabolism disorder. The aim of this study was to investigate how CIHH improves liver damage through ferritinophagy in MS rats. Male Sprague-Dawley rats aged 8-10 weeks were randomly divided into four groups: control (CON), CIHH (exposed to hypoxia at a simulated altitude of 5000 m for 28 days, 6 h daily), MS model (induced by a 16-week high-fat diet and 10% fructose water feeding), and MS + CIHH (exposed to CIHH after a 16-week MS inducement) groups. Liver index, liver function, iron content, tissue morphology, oxidative stress, ferritinophagy, ferroptosis, and iron metabolism-related protein expression were measured, and the ferritinophagy flux in the liver was further analyzed. Compared with CON rats, MS rats had an increased liver index, damaged liver tissue and function, increased iron content and iron deposition, disrupted iron metabolism, significantly increased oxidative stress indicators in the liver, significantly upregulated expression of ferroptosis-related proteins, and downregulated expression of nuclear receptor coactivator 4 (NCOA4) and ferritinophagy flux. After CIHH treatment, the degree of liver damage and various abnormal indicators in MS rats were significantly improved. CIHH may improve liver damage by promoting NCOA4-mediated ferritinophagy, reducing iron overload and oxidative stress, and thereby alleviating ferroptosis in MS rats.
Collapse
Affiliation(s)
- Fang Cui
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
- Department of Electron Microscope Laboratory, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Haichao Mi
- Department of Clinical Laboratory, Linyi People's Hospital, Linyi, 276003, People's Republic of China
| | - Ruotong Wang
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
| | - Yutao Du
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Shiyang Chang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Yangchen Su
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Aijing Liu
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People's Republic of China
| | - Min Shi
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, People's Republic of China.
- Hebei Key Laboratory of Laboratory Medicine, Shijiazhuang, 050017, People's Republic of China.
| |
Collapse
|
3
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
4
|
Chen H, Zhang H, Xie H, Zheng J, Lin M, Chen J, Tong Y, Jin J, Xu K, Yang J, Sun C, Xu X, Zheng J. Maternal, umbilical arterial metabolic levels and placental Nrf2/CBR1 expression in pregnancies with and without 25-hydroxyvitamin D deficiency. Gynecol Endocrinol 2021; 37:807-813. [PMID: 34232092 DOI: 10.1080/09513590.2021.1942451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND The aim of this case-control study was to document maternal, umbilical arterial metabolic levels and correlations in pregnancies with and without 25-hydroxyvitamin D [25(OH)D] deficiency, while, also investigating the expression of nuclear factor erythroid 2 related factor 2 (Nrf2) and carbonyl reductase 1 (CBR1) in the placenta. METHODS One hundred participants, 50 deficient for 25(OH)D and 50 normal, were recruited from among hospitalized single-term pregnant women who had elected for cesarean section. Umbilical arterial and placental samples were collected during cesarean section. Metabolic levels were assessed for the 25(OH)D deficiency and control groups' maternal, umbilical arterial samples. Nrf2 and CBR1 expression levels were investigated in the placentas of 12 pregnant women with 25(OH)D deficiency and 12 controls. RESULTS Compared with the control participants, the 25(OH)D deficient women had significantly higher triglyceride (TG) levels (3.80 ± 2.11 vs. 2.93 ± 1.16 mmol/L, 3.64 ± 1.84 vs. 2.81 ± 1.16 mmol/L, p < .01, .001); lower high density lipoprotein cholesterol (HDL-C) levels (1.54 ± 0.32 vs. 1.82 ± 0.63 mmol/L, 1.41 ± 0.72 vs. 2.44 ± 1.68 mmol/L, p < .001, .01) in both material blood and the umbilical artery. In addition, Nrf2 and CBR1 expression levels were lower in the maternal 25(OH)D deficient placenta. CONCLUSION 25(OH)D deficient pregnant women have higher TG levels and lower HDL-C levels in both material blood and the umbilical artery. TG level is negatively correlated with 25(OH)D in both the maternal serum and infant umbilical artery. 25(OH)D deficiency also lowers placental expression of Nrf2 and CBR1. UNLABELLED Supplemental data for this article is available online at here.
Collapse
Affiliation(s)
- Haiying Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Shanghai University, Wenzhou, PR China
| | - Hongping Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Shanghai University, Wenzhou, PR China
| | - Han Xie
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Jiayong Zheng
- Department of Wenzhou Key Laboratory of Gynecology and Obstetrics, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, PR China
| | - Meimei Lin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Shanghai University, Wenzhou, PR China
| | - Jingjing Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Shanghai University, Wenzhou, PR China
| | - Yu Tong
- Department of Clinical Laboratory, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou Peoples Hospital, Wenzhou, PR China
| | - Jiang Jin
- Department of Clinical Laboratory, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou Peoples Hospital, Wenzhou, PR China
| | - Kai Xu
- Department of Clinical Laboratory, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou Peoples Hospital, Wenzhou, PR China
| | - Jie Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Shanghai University, Wenzhou, PR China
| | - Congcong Sun
- Department of Wenzhou Key Laboratory of Gynecology and Obstetrics, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, PR China
| | - Xiaoming Xu
- Department of Wenzhou Key Laboratory of Gynecology and Obstetrics, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, PR China
| | - Jianqiong Zheng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Shanghai University, Wenzhou, PR China
- Department of Obstetrics and Gynecology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, PR China
| |
Collapse
|
5
|
Acute Hypobaric and Hypoxic Preconditioning Reduces Myocardial Ischemia-Reperfusion Injury in Rats. Cardiol Res Pract 2021; 2021:6617374. [PMID: 33815836 PMCID: PMC7990552 DOI: 10.1155/2021/6617374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background Chronic and/or intermittent exposure to hypobaric hypoxia reportedly exerts cardioprotective effects against ischemia-reperfusion injury. However, few studies have focused on the cardioprotective effects of acute and/or short-term hypobaric and hypoxic exposures. This study investigated the effects of acute hypobaric hypoxia on myocardial ischemia-reperfusion injury. Materials and Methods Rats were assigned to groups receiving normobaric normoxia (NN group), hypobaric hypoxia (HH group), or normobaric hypoxia (NH group). HH group rats were exposed to 60.8 kPa and 12.6% fraction of inspired oxygen in a hypobaric chamber for 6 h. NH group rats were exposed to hypoxic conditions under normal pressure. After each exposure, 30 min of myocardial ischemia was followed by 60 min of reperfusion. Cardiac function and infarct size were determined after reperfusion. Expression of hypoxia-inducible factor 1 alpha (HIF1α) was also measured. Results Cardiac function was better preserved in the HH and NH groups than in the NN group (p < 0.01 each). Median infarct size/area at risk was significantly lower in the HH group (50%, interquartile range [IQR] 48–54%; p < 0.01 vs. NN group) and NH group (45%, IQR 36–50%; p < 0.01 vs. NN group) than in the NN group (72%, IQR 69–75%). HIF1α expression was significantly higher in the HH group (p < 0.05 vs. NN group) and NH group (p < 0.01 vs. NN group) than in the NN group. Conclusions Exposure to acute and/or short-term hypobaric and hypoxic conditions might exert cardioprotective effects against myocardial ischemia-reperfusion injury via HIF1α modulation.
Collapse
|
6
|
Sun J, Huang X, Niu C, Wang X, Li W, Liu M, Wang Y, Huang S, Chen X, Li X, Wang Y, Jin L, Xiao J, Cong W. aFGF alleviates diabetic endothelial dysfunction by decreasing oxidative stress via Wnt/β-catenin-mediated upregulation of HXK2. Redox Biol 2020; 39:101811. [PMID: 33360774 PMCID: PMC7772795 DOI: 10.1016/j.redox.2020.101811] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Vascular complications of diabetes are a serious challenge in clinical practice, and effective treatments are an unmet clinical need. Acidic fibroblast growth factor (aFGF) has potent anti-oxidative properties and therefore has become a research focus for the treatment of diabetic vascular complications. However, the specific mechanisms by which aFGF regulates these processes remain unclear. The purpose of this study was to investigate whether aFGF alleviates diabetic endothelial dysfunction by suppressing mitochondrial oxidative stress. We found that aFGF markedly decreased mitochondrial superoxide generation in both db/db mice and endothelial cells incubated with high glucose (30 mM) plus palmitic acid (PA, 0.1 mM), and restored diabetes-impaired Wnt/β-catenin signaling. Pretreatment with the Wnt/β-catenin signaling inhibitors IWR-1-endo (IWR) and ICG-001 abolished aFGF-mediated attenuation of mitochondrial superoxide generation and endothelial protection. Furthermore, the effects of aFGF on endothelial protection under diabetic conditions were suppressed by c-Myc knockdown. Mechanistically, c-Myc knockdown triggered mitochondrial superoxide generation, which was related to decreased expression and subsequent impaired mitochondrial localization of hexokinase 2 (HXK2). The role of HXK2 in aFGF-mediated attenuation of mitochondrial superoxide levels and EC protection was further confirmed by si-Hxk2 and a cell-permeable form of hexokinase II VDAC binding domain (HXK2VBD) peptide, which inhibits mitochondrial localization of HXK2. Taken together, these findings suggest that the endothelial protective effect of aFGF under diabetic conditions could be partly attributed to its role in suppressing mitochondrial superoxide generation via HXK2, which is mediated by the Wnt/β-catenin/c-Myc axis.
Collapse
Affiliation(s)
- Jia Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Xiaozhong Huang
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Xuejiao Wang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanqian Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Mengxue Liu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ying Wang
- Department of Pharmacy, Jinhua Women & Children Health Hospital, Jinhua, PR China
| | - Shuai Huang
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Xixi Chen
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, PR China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China
| | - Yang Wang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
7
|
Oxidative Stress, Kinase Activity and Inflammatory Implications in Right Ventricular Hypertrophy and Heart Failure under Hypobaric Hypoxia. Int J Mol Sci 2020; 21:ijms21176421. [PMID: 32899304 PMCID: PMC7503689 DOI: 10.3390/ijms21176421] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
High altitude (hypobaric hypoxia) triggers several mechanisms to compensate for the decrease in oxygen bioavailability. One of them is pulmonary artery vasoconstriction and its subsequent pulmonary arterial remodeling. These changes can lead to pulmonary hypertension and the development of right ventricular hypertrophy (RVH), right heart failure (RHF) and, ultimately to death. The aim of this review is to describe the most recent molecular pathways involved in the above conditions under this type of hypobaric hypoxia, including oxidative stress, inflammation, protein kinases activation and fibrosis, and the current therapeutic approaches for these conditions. This review also includes the current knowledge of long-term chronic intermittent hypobaric hypoxia. Furthermore, this review highlights the signaling pathways related to oxidative stress (Nox-derived O2.- and H2O2), protein kinase (ERK5, p38α and PKCα) activation, inflammatory molecules (IL-1β, IL-6, TNF-α and NF-kB) and hypoxia condition (HIF-1α). On the other hand, recent therapeutic approaches have focused on abolishing hypoxia-induced RVH and RHF via attenuation of oxidative stress and inflammatory (IL-1β, MCP-1, SDF-1 and CXCR-4) pathways through phytotherapy and pharmacological trials. Nevertheless, further studies are necessary.
Collapse
|
8
|
Zheng J, Liu X, Zheng B, Zheng Z, Zhang H, Zheng J, Sun C, Chen H, Yang J, Wang Z, Lin M, Chen J, Zhou Q, Zheng Z, Xu X, Ying H. Maternal 25-Hydroxyvitamin D Deficiency Promoted Metabolic Syndrome and Downregulated Nrf2/CBR1 Pathway in Offspring. Front Pharmacol 2020; 11:97. [PMID: 32184720 PMCID: PMC7058637 DOI: 10.3389/fphar.2020.00097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome is a disorder of energy use and storage, which is characterized by central obesity, dyslipidemia, and raised blood pressure and blood sugar levels. Maternal 25-hydroxyvitamin D deficiency is known to cause metabolic changes, chronic disease, and increased adiposity in adulthood. However, the underlying mechanism of induced metabolic syndrome (MetS) in the offspring in vitamin D deficient pregnant mothers remains unclear. We identified that maternal 25-hydroxyvitamin D deficiency enhances oxidative stress, which leads to the development of MetS in the mother and her offspring. Further, immunohistochemical, Western blotting, and qRT-PCR analyses revealed that maternal 25-hydroxyvitamin D deficiency inhibited the activation of the Nrf2/carbonyl reductase 1 (CBR1) pathway in maternal placenta, liver, and pancreas, as well as the offspring's liver and pancreas. Further analyses uncovered that application of 25-hydroxyvitamin D activated the Nrf2/CBR1 pathway, relieving the oxidative stress in BRL cells, suggesting that 25-hydroxyvitamin D regulates oxidative stress in offspring and induces the activation of the Nrf2/CBR1 pathway. Taken together, our study finds that maternal 25-hydroxyvitamin D deficiency is likely to result in offspring's MetS probably via abnormal nutrition transformation across placenta. Depression of the Nrf2/CBR1 pathway in both mothers and their offspring is one of the causes of oxidative stress leading to MetS. This study suggests that 25-hydroxyvitamin D treatment may relieve the offspring's MetS.
Collapse
Affiliation(s)
- Jianqiong Zheng
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Xiaohui Liu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingbing Zheng
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Zhenzhen Zheng
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Hongping Zhang
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Jiayong Zheng
- Department of Wenzhou Key Laboratory of Gynecology and Obstetrics, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Congcong Sun
- Department of Wenzhou Key Laboratory of Gynecology and Obstetrics, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Haiying Chen
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Jie Yang
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Zuo Wang
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Meimei Lin
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Jingjing Chen
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Qingdiao Zhou
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Zhi Zheng
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, the Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Xiaoming Xu
- Department of Wenzhou Key Laboratory of Gynecology and Obstetrics, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Brown Adipocyte and Splenocyte Co-Culture Maintains Regulatory T Cell Subset in Intermittent Hypobaric Conditions. Tissue Eng Regen Med 2019; 16:539-548. [PMID: 31624708 PMCID: PMC6778593 DOI: 10.1007/s13770-019-00205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/15/2019] [Accepted: 07/16/2019] [Indexed: 11/02/2022] Open
Abstract
Background Brown adipocytes have thermogenic characteristics in neonates and elicit anti-inflammatory responses. We postulated that thermogenic brown adipocytes produce distinctive intercellular effects in a hypobaric state. The purpose of this study is to analyze the correlation between brown adipocyte and regulatory T cell (Treg) expression under intermittent hypobaric conditions. Methods Brown and white adipocytes were harvested from the interscapular and flank areas of C57BL6 mice, respectively. Adipocytes were cultured with syngeneic splenocytes after isolation and differentiation. Intermittent hypobaric conditions were generated using cyclic negative pressure application for 48 h in both groups of adipocytes. Expression levels of Tregs (CD4 + CD25 + Foxp3 + T cells), cytokines [tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10), and the programmed death-ligand 1 (PD-L1)] co-inhibitory ligand were examined. Results Splenocytes, cultured with brown and white adipocytes, exhibited comparable Treg expression in a normobaric state. Under hypobaric conditions, brown adipocytes maintained a subset of Tregs. However, a decrease in Tregs was found in the white adipocyte group. TNF-α levels increased in both groups under hypobaric conditions. In the brown adipocyte group, anti-inflammatory IL-10 expression increased significantly; meanwhile, IL-10 expression decreased in the white adipocyte group. PD-L1 levels increased more significantly in brown adipocytes than in white adipocytes under hypobaric conditions. Conclusion Both brown and white adipocytes support Treg expression when they are cultured with splenocytes. Of note, brown adipocytes maintained Treg expression in intermittent hypobaric conditions. Anti-inflammatory cytokines and co-inhibitory ligands mediate the immunomodulatory effects of brown adipocytes under altered atmospheric conditions. Brown adipocytes showed the feasibility as a source of adjustment in physical stresses.
Collapse
|
10
|
Xue M, Joo YA, Li S, Niu C, Chen G, Yi X, Liang Y, Chen Z, Shen Y, Ye W, Cai L, Wang X, Jin L, Cong W. Metallothionein Protects the Heart Against Myocardial Infarction via the mTORC2/FoxO3a/Bim Pathway. Antioxid Redox Signal 2019; 31:403-419. [PMID: 30860395 DOI: 10.1089/ars.2018.7597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aims: Cardiac-specific overexpression of metallothionein (MT) has been shown to be beneficial in ischemic heart disease, but the detailed mechanisms through which MT protects against myocardial infarction (MI) remain unknown. This study assessed the involvement of the mTORC2/FoxO3a/Bim pathway in the cardioprotective effects of MT. Results: MI was induced in wild-type (FVB) mice and in cardiac-specific MT-overexpressing transgenic (MT-TG) mice by ligation of the left anterior descending (LAD) coronary artery. Cardiac function was better; infarct size and cardiomyocyte apoptosis were lower in MT-TG mice than in FVB mice after MI. Moreover, MT-TG mice exhibited better phenotypes after LAD ligation than FVB mice treated with Mn(III)tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP; a reactive oxygen species [ROS] scavenger) and cardiac-specific catalase-overexpressing transgenic (CAT-TG) mice, which showed the same ROS levels as MT-TG mice after MI. Activation of mechanistic target of rapamycin complex 2 (mTORC2) was essential for the cardioprotective effects of MT against MI. In addition, MT attenuated the downregulation of phospho-FoxO3a after MI, inhibiting the expression of the apoptosis-associated gene Bim, located downstream of FoxO3a, and reducing the level of apoptosis after MI. To mimic ischemic-injured FVB and MT-TG mice in vitro, H9c2 and MT-overexpressing H9c2 (H9c2MT7) cardiomyocytes were subjected to oxygen and glucose deprivation, with the results being consistent with those obtained in vivo. Innovation and Conclusion: The cardioprotective effects of MT against MI are not entirely dependent upon its ability to eliminate ROS. Rather, MT overexpression mostly protects against MI through the mTORC2-FoxO3a-Bim pathway.
Collapse
Affiliation(s)
- Mei Xue
- 1 Precision Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Young A Joo
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Santie Li
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chao Niu
- 3 The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Gen Chen
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xinchu Yi
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yangzhi Liang
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhiwei Chen
- 3 The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yingjie Shen
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weijian Ye
- 3 The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lu Cai
- 4 Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, Kentucky
| | - Xu Wang
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Litai Jin
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weitao Cong
- 2 School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
11
|
Cheng WJ, Liu X, Zhang L, Guo XQ, Wang FW, Zhang Y, Tian YM. Chronic intermittent hypobaric hypoxia attenuates skeletal muscle ischemia-reperfusion injury in mice. Life Sci 2019; 231:116533. [PMID: 31173783 DOI: 10.1016/j.lfs.2019.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/25/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
AIM The aim of this study was to investigate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against skeletal muscle ischemia-reperfusion (IR) injury and to determine the underlying mechanism. MAIN METHODS C57BL/6 mice were randomly divided into 3 groups: skeletal muscle IR injury group (IR), CIHH pretreatment following IR group (IR + CIHH), and sham operation group (Sham). The skeletal muscle IR injury model was induced by the unilateral application of a tourniquet on a hind limb for 3 h and then releasing it for 24 h. CIHH pretreatment simulating a 5000-m altitude was applied 6 h per day for 28 days. The functional and morphological performance of IR-injured gastrocnemius muscle was evaluated using contraction force, H&E staining, and transmission electron microscopy. IR injury-induced CD68+ macrophage infiltration was assessed by immunofluorescence. TNFα levels in serum and muscle were measured by ELISA and western blotting, respectively. Apoptosis was examined by TUNEL staining and Cleaved Caspase-3 protein expression. KEY FINDINGS Acute IR injury resulted in reduced contraction tension, morphological destruction, macrophage infiltration, increased TNFα levels, and apoptosis in gastrocnemius muscle. CIHH pretreatment significantly ameliorated contraction function and morphological performance in IR-injured skeletal muscle. In addition, CIHH pretreatment resulted in marked decreases in CD68+ macrophage infiltration, TNFα levels, and apoptosis. SIGNIFICANCE These data demonstrated that CIHH has a protective effect against acute IR injury in skeletal muscle via inhibition of inflammation and apoptosis.
Collapse
Affiliation(s)
- Wen-Jie Cheng
- Department of Anesthesiology, Tianjin Hospital, Tianjin 300000, China; Graduate school, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xin Liu
- Department of Neurology, Second Hospital of Xi'an Medical University, Xi'an, Shanxi 710038, China
| | - Li Zhang
- Department of Orthopedics, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Xin-Qi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Fu-Wei Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yan-Ming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
12
|
Beleza J, Albuquerque J, Santos-Alves E, Fonseca P, Santocildes G, Stevanovic J, Rocha-Rodrigues S, Rizo-Roca D, Ascensão A, Torrella JR, Magalhães J. Self-Paced Free-Running Wheel Mimics High-Intensity Interval Training Impact on Rats' Functional, Physiological, Biochemical, and Morphological Features. Front Physiol 2019; 10:593. [PMID: 31139096 PMCID: PMC6527817 DOI: 10.3389/fphys.2019.00593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Free-running wheel (FRW) is an animal exercise model that relies on high-intensity interval moments interspersed with low-intensity or pauses apparently similar to those performed in high-intensity interval training (HIIT). Therefore, this study, conducted over a 12-weeks period, aimed to compare functional, thermographic, biochemical and morphological skeletal and cardiac muscle adaptations induced by FRW and HIIT. Twenty-four male Wistar rats were assigned into three groups: sedentary rats (SED), rats that voluntarily exercise in free wheels (FRW) and rats submitted to a daily HIIT. Functional tests revealed that compared to SED both FRW and HIIT increased the ability to perform maximal workload tests (MWT-cm/s) (45 ± 1 vs. 55 ± 2 and vs. 65 ± 2). Regarding thermographic assays, FRW and HIIT increased the ability to lose heat through the tail during MWT. Histochemical analyzes performed in tibialis anterior (TA) and soleus (SOL) muscles showed a general adaptation toward a more oxidative phenotype in both FRW and HIIT. Exercise increased the percentage of fast oxidative glycolytic (FOG) in medial fields of TA (29.7 ± 2.3 vs. 44.9 ± 4.4 and vs. 45.2 ± 5.3) and slow oxidative (SO) in SOL (73.4 ± 5.7 vs. 99.5 ± 0.5 and vs. 96.4 ± 1.2). HITT decreased fiber cross-sectional area (FCSA-μm2) of SO (4350 ± 286.9 vs. 4893 ± 325 and vs. 3621 ± 237.3) in SOL. Fast glycolytic fibers were bigger across all the TA muscle in FRW and HIIT groups. The FCSA decrease in FOG fibers was accompanied by a circularity decrease of SO from SOL fibers (0.840 ± 0.005 vs. 0.783 ± 0.016 and vs. 0.788 ± 0.010), and a fiber and global field capillarization increase in both FRW and HIIT protocols. Moreover, FRW and HIIT animals exhibited increased cardiac mitochondrial respiratory control ratio with complex I-driven substrates (3.89 ± 0.14 vs. 5.20 ± 0.25 and vs. 5.42 ± 0.37). Data suggest that FRW induces significant functional, physiological, and biochemical adaptations similar to those obtained under an intermittent forced exercise regimen, such as HIIT.
Collapse
Affiliation(s)
- Jorge Beleza
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - João Albuquerque
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Estela Santos-Alves
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Pedro Fonseca
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Garoa Santocildes
- Departament de Biologia Cel ⋅ lular, de Fisiologia i d'Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jelena Stevanovic
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Sílvia Rocha-Rodrigues
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - David Rizo-Roca
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| | - Joan Ramon Torrella
- Departament de Biologia Cel ⋅ lular, de Fisiologia i d'Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Department of Sport Biology, Faculty of Sport, Research Centre in Physical Activity, Health and Leisure (CIAFEL), University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Huang X, Sun J, Chen G, Niu C, Wang Y, Zhao C, Sun J, Huang H, Huang S, Liang Y, Shen Y, Cong W, Jin L, Zhu Z. Resveratrol Promotes Diabetic Wound Healing via SIRT1-FOXO1-c-Myc Signaling Pathway-Mediated Angiogenesis. Front Pharmacol 2019; 10:421. [PMID: 31068817 PMCID: PMC6491521 DOI: 10.3389/fphar.2019.00421] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Background/Aims: Diabetic non-healing skin ulcers represent a serious challenge in clinical practice, in which the hyperglycemia-induced disturbance of angiogenesis, and endothelial dysfunction play a crucial role. Resveratrol (RES), a silent information regulator 1 (SIRT1) agonist, can improve endothelial function and has strong pro-angiogenic properties, and has thus become a research focus for the treatment of diabetic non-healing skin ulcers; however, the underlying mechanism by which RES regulates these processes remains unclear. Therefore, the present study was intended to determine if RES exerts its observed protective role in diabetic wound healing by alleviating hyperglycemia-induced endothelial dysfunction and the disturbance of angiogenesis. Methods: We investigated the effects of RES on cell migration, cell proliferation, apoptosis, tube formation, and the underlying molecular mechanisms in 33 mM high glucose-stimulated human umbilical vein endothelial cells (HUVECs) by semi-quantitative RT-PCR, western blot analysis, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and immunofluorescence in vitro. We further explored the role of RES on endothelial dysfunction and wound healing disturbance in db/db mice by TUNEL staining, immunofluorescence, and photography in vivo. Results: We observed an obvious inhibition of hyperglycemia-triggered endothelial dysfunction and a disturbance of angiogenesis, followed by the promotion of diabetic wound healing via RES, along with restoration of the activity of the hyperglycemia-impaired SIRT1 signaling pathway. Pretreatment with EX-527, a SIRT1 inhibitor, abolished the RES-mediated endothelial protection and pro-angiogenesis action, and then delayed diabetic wound healing. Furthermore, examination of the overexpression of forkhead box O1 (FOXO1), a transcription factor substrate of SIRT1, in HUVECs and db/db mice revealed that RES activated SIRT1 to restore hyperglycemia-triggered endothelial dysfunction and disturbance of angiogenesis, followed by the promotion of diabetic wound healing in a c-Myc-dependent manner. Pretreatment with 10058-F4, a c-Myc inhibitor, repressed RES-mediated endothelial protection, angiogenesis, and diabetic wound healing. Conclusion: Our findings indicate that the positive role of RES in diabetic wound healing via its SIRT1-dependent endothelial protection and pro-angiogenic effects involves the inhibition of FOXO1 and the de-repression of c-Myc expression.
Collapse
Affiliation(s)
- Xiaozhong Huang
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jia Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Wang
- Department of Pharmacy, Jinhua Women & Children Health Hospital, Jinhua, China
| | - Congcong Zhao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jian Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Huiya Huang
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuai Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yangzhi Liang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Chen G, Chen X, Niu C, Huang X, An N, Sun J, Huang S, Ye W, Li S, Shen Y, Liang J, Cong W, Jin L. Baicalin alleviates hyperglycemia-induced endothelial impairment 1 via Nrf2. J Endocrinol 2018; 240:JOE-18-0457.R1. [PMID: 30400057 DOI: 10.1530/joe-18-0457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/04/2018] [Indexed: 11/08/2022]
Abstract
Baicalin is the major component found in Scutellaria baicalensis root, a widely used herb in traditional Chinese medicine, which exhibits strong anti-inflammatory, anti-viral and anti-tumor activities. The present work was devoted to elucidate the molecular and cellular mechanisms underlying the protective effects of Baicalin against diabetes-induced oxidative damage, inflammation and endothelial dysfunction. Diabetic mice, induced by streptozotocin (STZ), were treated with intraperitoneal Baicalin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of Baicalin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered oxidative damage and inflammation in HUVECs and diabetic aortal vasculature by Baicalin, along with restoration of hyperglycemia-impaired nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway activity. However, the protective effects of Baicalin almost completely abolished in HUVECs transduced with shRNA against Nrf2, but not with nonsense shRNA. Mechanistic studies demonstrated that HG decreased Akt and GSK3B phosphorylation, restrained nuclear export of Fyn and nuclear localization of Nrf2, blunted Nrf2 downstream target genes, and subsequently induced oxidative stress in HUVECs. However, those destructive cascade, were well prevented by Baicalin in HUVECs. Furthermore, LY294002 and ML385 (inhibitor of PI3K and Nrf2) attenuated Baicalin mediated Nrf2 activation and the ability of facilitates angiogenesis in vivo and ex vivo. Taken together, the endothelial protective effect of Baicalin under hyperglycemia condition could be partly attributed to its role in downregulating reactive oxygen species (ROS) and inflammation via the Akt/GSK3B/Fyn-mediated Nrf2 activation.
Collapse
Affiliation(s)
- Gen Chen
- G Chen, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Xiangjuan Chen
- X Chen, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China, Wenzhou, China
| | - Chao Niu
- C Niu, Department of pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, Wenzhou, China
| | - Xiaozhong Huang
- X Huang, Department of pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, Wenzhou, China
| | - Ning An
- N An, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Jia Sun
- J Sun, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Shuai Huang
- S Huang, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Weijian Ye
- W Ye, Department of pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, Wenzhou, China
| | - Santie Li
- S Li, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Yingjie Shen
- Y Shen, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Jiaojiao Liang
- J Liang, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Weitao Cong
- W Cong, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| | - Litai Jin
- L Jin, School of Pharmacy, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, P.R. China, Wenzhou, China
| |
Collapse
|
15
|
Viscor G, Torrella JR, Corral L, Ricart A, Javierre C, Pages T, Ventura JL. Physiological and Biological Responses to Short-Term Intermittent Hypobaric Hypoxia Exposure: From Sports and Mountain Medicine to New Biomedical Applications. Front Physiol 2018; 9:814. [PMID: 30038574 PMCID: PMC6046402 DOI: 10.3389/fphys.2018.00814] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, the altitude acclimatization responses elicited by short-term intermittent exposure to hypoxia have been subject to renewed attention. The main goal of short-term intermittent hypobaric hypoxia exposure programs was originally to improve the aerobic capacity of athletes or to accelerate the altitude acclimatization response in alpinists, since such programs induce an increase in erythrocyte mass. Several model programs of intermittent exposure to hypoxia have presented efficiency with respect to this goal, without any of the inconveniences or negative consequences associated with permanent stays at moderate or high altitudes. Artificial intermittent exposure to normobaric hypoxia systems have seen a rapid rise in popularity among recreational and professional athletes, not only due to their unbeatable cost/efficiency ratio, but also because they help prevent common inconveniences associated with high-altitude stays such as social isolation, nutritional limitations, and other minor health and comfort-related annoyances. Today, intermittent exposure to hypobaric hypoxia is known to elicit other physiological response types in several organs and body systems. These responses range from alterations in the ventilatory pattern to modulation of the mitochondrial function. The central role played by hypoxia-inducible factor (HIF) in activating a signaling molecular cascade after hypoxia exposure is well known. Among these targets, several growth factors that upregulate the capillary bed by inducing angiogenesis and promoting oxidative metabolism merit special attention. Applying intermittent hypobaric hypoxia to promote the action of some molecules, such as angiogenic factors, could improve repair and recovery in many tissue types. This article uses a comprehensive approach to examine data obtained in recent years. We consider evidence collected from different tissues, including myocardial capillarization, skeletal muscle fiber types and fiber size changes induced by intermittent hypoxia exposure, and discuss the evidence that points to beneficial interventions in applied fields such as sport science. Short-term intermittent hypoxia may not only be useful for healthy people, but could also be considered a promising tool to be applied, with due caution, to some pathophysiological states.
Collapse
Affiliation(s)
- Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Joan R. Torrella
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Luisa Corral
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Antoni Ricart
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Casimiro Javierre
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Teresa Pages
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Josep L. Ventura
- Exercise Physiology Unit, Department of Physiological Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
16
|
Cabrera-Aguilera I, Rizo-Roca D, Marques EA, Santocildes G, Pagès T, Viscor G, Ascensão AA, Magalhães J, Torrella JR. Additive Effects of Intermittent Hypobaric Hypoxia and Endurance Training on Bodyweight, Food Intake, and Oxygen Consumption in Rats. High Alt Med Biol 2018; 19:278-285. [PMID: 29957064 DOI: 10.1089/ham.2018.0013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cabrera-Aguilera, Ignacio, David Rizo-Roca, Elisa A. Marques, Garoa Santocildes, Teresa Pagès, Gines Viscor, António A. Ascensão, José Magalhães, and Joan Ramon Torrella. Additive effects of intermittent hypobaric hypoxia and endurance training on bodyweight, food intake, and oxygen consumption in rats. High Alt Med Biol. 19:278-285, 2018.-We used an animal model to elucidate the effects of an intermittent hypobaric hypoxia (IHH) and endurance exercise training (EET) protocol on bodyweight (BW), food and water intake, and oxygen consumption. Twenty-eight young adult male rats were divided into four groups: normoxic sedentary (NS), normoxic exercised (NE), hypoxic sedentary (HS), and hypoxic exercised (HE). Normoxic groups were maintained at an atmospheric pressure equivalent to sea level, whereas the IHH protocol consisted of 5 hours per day for 33 days at a simulated altitude of 6000 m. Exercised groups ran in normobaric conditions on a treadmill for 1 hour/day for 5 weeks at a speed of 25 m/min. At the end of the protocol, both hypoxic groups showed significant decreases in BW from the ninth day of exposure, reaching final 10% (HS) to 14.5% (HE) differences when compared with NS. NE rats also showed a significant weight reduction after the 19th day, with a decrease of 7.4%. The BW of hypoxic animals was related to significant hypophagia elicited by IHH exposure (from 8% to 12%). In contrast, EET had no effect on food ingestion. Total water intake was not affected by hypoxia but was significantly increased by exercise. An analysis of oxygen consumption at rest (mL O2/[kg·min]) revealed two findings: a significant decrease in both hypoxic groups after the protocol (HS, 21.7 ± 0.70 vs. 19.1 ± 0.78 and HE, 22.8 ± 0.80 vs. 17.1 ± 0.90) and a significant difference at the end of the protocol between NE (21.3 ± 0.77) and HE (17.1 ± 0.90). These results demonstrate that IHH and EET had an additive effect on BW loss, providing evidence that rats underwent a metabolic adaptation through a reduction in oxygen consumption measured under normoxic conditions. These data suggest that the combination of IHH and EET could serve as an alternative treatment for the management of overweight and obesity.
Collapse
Affiliation(s)
- Ignacio Cabrera-Aguilera
- 1 Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona , Barcelona, Spain
| | - David Rizo-Roca
- 1 Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona , Barcelona, Spain .,2 LaMetEx-Laboratory of Metabolism and Exercise, Faculdade de Desporto, Centro de Investigação em Atividade Física e Lazer (CIAFEL), Universidade do Porto , Porto, Portugal
| | - Elisa A Marques
- 3 Centro de Investigação em Desporto, Saúde e Desenvolvimento Humano (CIDESD), Instituto Universitário da Maia (ISMAI) , Maia, Portugal
| | - Garoa Santocildes
- 1 Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona , Barcelona, Spain
| | - Teresa Pagès
- 1 Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona , Barcelona, Spain
| | - Gines Viscor
- 1 Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona , Barcelona, Spain
| | - António A Ascensão
- 2 LaMetEx-Laboratory of Metabolism and Exercise, Faculdade de Desporto, Centro de Investigação em Atividade Física e Lazer (CIAFEL), Universidade do Porto , Porto, Portugal
| | - José Magalhães
- 2 LaMetEx-Laboratory of Metabolism and Exercise, Faculdade de Desporto, Centro de Investigação em Atividade Física e Lazer (CIAFEL), Universidade do Porto , Porto, Portugal
| | - Joan Ramon Torrella
- 1 Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona , Barcelona, Spain
| |
Collapse
|
17
|
Wszedybyl-Winklewska M, Wolf J, Szarmach A, Winklewski PJ, Szurowska E, Narkiewicz K. Central sympathetic nervous system reinforcement in obstructive sleep apnoea. Sleep Med Rev 2018; 39:143-154. [DOI: 10.1016/j.smrv.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 01/30/2023]
|
18
|
Rizo-Roca D, Bonet JB, Ínal B, Ríos-Kristjánsson JG, Pagès T, Viscor G, Torrella JR. Contractile Activity Is Necessary to Trigger Intermittent Hypobaric Hypoxia-Induced Fiber Size and Vascular Adaptations in Skeletal Muscle. Front Physiol 2018; 9:481. [PMID: 29780328 PMCID: PMC5945885 DOI: 10.3389/fphys.2018.00481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/16/2018] [Indexed: 01/20/2023] Open
Abstract
Altitude training has become increasingly popular in recent decades. Its central and peripheral effects are well-described; however, few studies have analyzed the effects of intermittent hypobaric hypoxia (IHH) alone on skeletal muscle morphofunctionality. Here, we studied the effects of IHH on different myofiber morphofunctional parameters, investigating whether contractile activity is required to elicit hypoxia-induced adaptations in trained rats. Eighteen male Sprague-Dawley rats were trained 1 month and then divided into three groups: (1) rats in normobaria (trained normobaric inactive, TNI); (2) rats subjected daily to a 4-h exposure to hypobaric hypoxia equivalent to 4,000 m (trained hypobaric inactive, THI); and (3) rats subjected daily to a 4-h exposure to hypobaric hypoxia just before performing light exercise (trained hypobaric active, THA). After 2 weeks, the tibialis anterior muscle (TA) was excised. Muscle cross-sections were stained for: (1) succinate dehydrogenase to identify oxidative metabolism; (2) myosin-ATPase to identify slow- and fast-twitch fibers; and (3) endothelial-ATPase to stain capillaries. Fibers were classified as slow oxidative (SO), fast oxidative glycolytic (FOG), fast intermediate glycolytic (FIG) or fast glycolytic (FG) and the following parameters were measured: fiber cross-sectional area (FCSA), number of capillaries per fiber (NCF), NCF per 1,000 μm2 of FCSA (CCA), fiber and capillary density (FD and CD), and the ratio between CD and FD (C/F). THI rats did not exhibit significant changes in most of the parameters, while THA animals showed reduced fiber size. Compared to TNI rats, FOG fibers from the lateral/medial fields, as well as FIG and FG fibers from the lateral region, had smaller FCSA in THA rats. Moreover, THA rats had increased NCF in FG fibers from all fields, in medial and posterior FIG fibers and in posterior FOG fibers. All fiber types from the three analyzed regions (except the posterior FG fibers) displayed a significantly increased CCA ratio compared to TNI rats. Global capillarisation was also increased in lateral and medial fields. Our results show that IHH alone does not induce alterations in the TA muscle. The inclusion of exercise immediately after the tested hypoxic conditions is enough to trigger a morphofunctional response that improves muscle capillarisation.
Collapse
Affiliation(s)
- David Rizo-Roca
- Unitat de Fisiologia, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,LaMetEx - Laboratory of Metabolism and Exercise, Faculty of Sport Sciences, University of Porto, Porto, Portugal
| | - Jèssica B Bonet
- Unitat de Fisiologia, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Büsra Ínal
- Unitat de Fisiologia, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Juan Gabriel Ríos-Kristjánsson
- Unitat de Fisiologia, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Pagès
- Unitat de Fisiologia, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Ginés Viscor
- Unitat de Fisiologia, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joan R Torrella
- Unitat de Fisiologia, Departament de Biologia Cel⋅lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Marques-Aleixo I, Santos-Alves E, Oliveira PJ, Moreira PI, Magalhães J, Ascensão A. The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta Rev Cancer 2018; 1869:189-199. [PMID: 29408395 DOI: 10.1016/j.bbcan.2018.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/07/2023]
Abstract
Doxorubicin (DOX) is a widely used antineoplastic agent for a wide range of cancers, including hematological malignancies, soft tissue sarcomas and solid tumors. However, DOX exhibits a dose-related toxicity that results in life-threatening cardiomyopathy. In addition to the heart, there is evidence that DOX toxicity extends to other organs. This general toxicity seems to be related to mitochondrial network structural, molecular and functional impairments. Several countermeasures for these negative effects have been proposed, being physical exercise, not only one of the most effective non-pharmacologic strategy but also widely recommended as booster against cancer-related fatigue. It is widely accepted that mitochondria are critical sensors of tissue functionality, both modulated by DOX and exercise. Therefore, this review focuses on the current understanding of the mitochondrial-mediated mechanisms underlying the protective effect of exercise against DOX-induced toxicity, not only limited to the cardiac tissue, but also in other tissues such as skeletal muscle, liver and brain. We here analyze recent developments regarding the beneficial effects of exercise targeting mitochondrial responsive phenotypes against redox changes, mitochondrial bioenergetics, apoptotic, dynamics and quality control signalling affected by DOX treatment.
Collapse
Affiliation(s)
- I Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Psychology, Education and Sport, University Lusófona of Porto, Portugal.
| | - E Santos-Alves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | - P J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, Cantanhede, Portugal
| | - P I Moreira
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - J Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| | - A Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| |
Collapse
|
20
|
Clark A, Mach N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front Physiol 2017; 8:319. [PMID: 28579962 PMCID: PMC5437217 DOI: 10.3389/fphys.2017.00319] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
Many physiological changes occur in response to endurance exercise in order to adapt to the increasing energy needs, mitochondria biogenesis, increased reactive oxygen species (ROS) production and acute inflammatory responses. Mitochondria are organelles within each cell that are crucial for ATP production and are also a major producer of ROS and reactive nitrogen species during intense exercise. Recent evidence shows there is a bidirectional interaction between mitochondria and microbiota. The gut microbiota have been shown to regulate key transcriptional co-activators, transcription factors and enzymes involved in mitochondrial biogenesis such as PGC-1α, SIRT1, and AMPK genes. Furthermore, the gut microbiota and its metabolites, such as short chain fatty acids and secondary bile acids, also contribute to host energy production, ROS modulation and inflammation in the gut by attenuating TNFα- mediated immune responses and inflammasomes such as NLRP3. On the other hand, mitochondria, particularly mitochondrial ROS production, have a crucial role in regulating the gut microbiota via modulating intestinal barrier function and mucosal immune responses. Recently, it has also been shown that genetic variants within the mitochondrial genome, could affect mitochondrial function and therefore the intestinal microbiota composition and activity. Diet is also known to dramatically modulate the composition of the gut microbiota. Therefore, studies targeting the gut microbiota can be useful for managing mitochondrial related ROS production, pro-inflammatory signals and metabolic limits in endurance athletes.
Collapse
Affiliation(s)
- Allison Clark
- Health Science Department, Open University of CataloniaBarcelona, Spain
| | - Núria Mach
- Health Science Department, Open University of CataloniaBarcelona, Spain.,UMR 1313, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
21
|
Rizo-Roca D, Ríos-Kristjánsson JG, Núñez-Espinosa C, Santos-Alves E, Magalhães J, Ascensão A, Pagès T, Viscor G, Torrella JR. Modulation of mitochondrial biomarkers by intermittent hypobaric hypoxia and aerobic exercise after eccentric exercise in trained rats. Appl Physiol Nutr Metab 2017; 42:683-693. [PMID: 28177702 DOI: 10.1139/apnm-2016-0526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unaccustomed eccentric contractions induce muscle damage, calcium homeostasis disruption, and mitochondrial alterations. Since exercise and hypoxia are known to modulate mitochondrial function, we aimed to analyze the effects on eccentric exercise-induced muscle damage (EEIMD) in trained rats using 2 recovery protocols based on: (i) intermittent hypobaric hypoxia (IHH) and (ii) IHH followed by exercise. The expression of biomarkers related to mitochondrial biogenesis, dynamics, oxidative stress, and bioenergetics was evaluated. Soleus muscles were excised before (CTRL) and 1, 3, 7, and 14 days after an EEIMD protocol. The following treatments were applied 1 day after the EEIMD: passive normobaric recovery (PNR), 4 h daily exposure to passive IHH at 4000 m (PHR) or IHH exposure followed by aerobic exercise (AHR). Citrate synthase activity was reduced at 7 and 14 days after application of the EEIMD protocol. However, this reduction was attenuated in AHR rats at day 14. PGC-1α and Sirt3 and TOM20 levels had decreased after 1 and 3 days, but the AHR group exhibited increased expression of these proteins, as well as of Tfam, by the end of the protocol. Mfn2 greatly reduced during the first 72 h, but returned to basal levels passively. At day 14, AHR rats had higher levels of Mfn2, OPA1, and Drp1 than PNR animals. Both groups exposed to IHH showed a lower p66shc(ser36)/p66shc ratio than PNR animals, as well as higher complex IV subunit I and ANT levels. These results suggest that IHH positively modulates key mitochondrial aspects after EEIMD, especially when combined with aerobic exercise.
Collapse
Affiliation(s)
- David Rizo-Roca
- a Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643. E-08028, Barcelona, Spain
| | - Juan Gabriel Ríos-Kristjánsson
- a Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643. E-08028, Barcelona, Spain
| | - Cristian Núñez-Espinosa
- a Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643. E-08028, Barcelona, Spain.,b School of Medicine, University of Magallanes, Punta Arenas, Chile 621-0427
| | - Estela Santos-Alves
- c Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal 4200-450
| | - José Magalhães
- c Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal 4200-450
| | - António Ascensão
- c Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal 4200-450
| | - Teresa Pagès
- a Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643. E-08028, Barcelona, Spain
| | - Ginés Viscor
- a Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643. E-08028, Barcelona, Spain
| | - Joan Ramon Torrella
- a Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 643. E-08028, Barcelona, Spain
| |
Collapse
|
22
|
Herrera EA, Farías JG, González-Candia A, Short SE, Carrasco-Pozo C, Castillo RL. Ω3 Supplementation and intermittent hypobaric hypoxia induce cardioprotection enhancing antioxidant mechanisms in adult rats. Mar Drugs 2015; 13:838-60. [PMID: 25658050 PMCID: PMC4344605 DOI: 10.3390/md13020838] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 01/29/2023] Open
Abstract
Intermittent hypobaric hypoxia (IH) is linked with oxidative stress, impairing cardiac function. However, early IH also activate cardio-protective mechanisms. Omega 3 fatty acids (Ω3) induce cardioprotection by reducing infarct size and reinforcing antioxidant defenses. The aim of this work was to determine the combined effects of IH and Ω3 on cardiac function; oxidative balance and inflammatory state. Twenty-eight rats were randomly divided into four groups: normobaric normoxia (N); N + Ω3 (0.3 g·kg−1·day−1); IH; and IH + Ω3. IH was induced by 4 intercalate periods of hypoxia (4 days)—normoxia (4 days) in a hypobaric chamber during 32 days. At the end of the exposure, hearts were mounted in a Langendorff system and subjected to 30 min of ischemia followed by 120 min of reperfusion. In addition, we determined HIF-1α and ATP levels, as well as oxidative stress by malondialdehyde and nitrotyrosine quantification. Further, the expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase was determined. NF-kappaB and myeloperoxidase levels were assessed in the hearts. Relative to N hearts, IH improved left ventricular function (Left ventricular developed pressure: N; 21.8 ± 3.4 vs. IH; 42.8 ± 7.1 mmHg; p < 0.05); reduced oxidative stress (Malondialdehyde: N; 14.4 ± 1.8 vs. IH; 7.3 ± 2.1 μmol/mg prot.; p < 0.05); and increased antioxidant enzymes expression. Supplementation with Ω3 induces similar responses as IH group. Our findings suggest that both, IH and Ω3 in an independent manner, induce functional improvement by antioxidant and anti-inflammatory mechanisms, establishing cardio-protection.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Jorge G Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile.
| | - Alejandro González-Candia
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Stefania E Short
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de la Frontera, Temuco 4811230, Chile.
| | - Catalina Carrasco-Pozo
- Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Rodrigo L Castillo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| |
Collapse
|
23
|
Magalhães J, Gonçalves IO, Lumini-Oliveira J, Marques-Aleixo I, Passos E, Rocha-Rodrigues S, Machado NG, Moreira AC, Rizo D, Viscor G, Oliveira PJ, Torrella JR, Ascensão A. Modulation of cardiac mitochondrial permeability transition and apoptotic signaling by endurance training and intermittent hypobaric hypoxia. Int J Cardiol 2014; 173:40-5. [PMID: 24602319 DOI: 10.1016/j.ijcard.2014.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/23/2014] [Accepted: 02/08/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Modulation of the mitochondrial permeability transition pore (MPTP) and inhibition of the apoptotic signaling are critically associated with the cardioprotective phenotypes afforded by both intermittent hypobaric-hypoxia (IHH) and endurance-training (ET). We recently proposed that IHH and ET improve cardiac function and basic mitochondrial capacity, although without showing addictive effects. Here we investigate whether a combination of IHH and ET alters cardiac mitochondrial vulnerability to MPTP and related apoptotic signaling. METHODS Male Wistar rats were divided into normoxic-sedentary (NS), normoxic-exercised (NE, 1h/day/5 week treadmill-running), hypoxic-sedentary (HS, 6000 m, 5h/day/5 weeks) and hypoxic-exercised (HE) to study susceptibility to calcium-induced cardiac MPTP opening. Mitochondrial cyclophilin D (CypD), adenine nucleotide translocator (ANT), Bax and Bcl-2 protein contents were semi-quantified by Western blotting. Cardiac caspase 3-, 8- and 9-like activities were measured. Mitochondrial aconitase and superoxide dismutase (MnSOD) activity and malondialdehyde (MDA) and sulphydryl group (-SH) content were determined. RESULTS Susceptibility to MPTP decreased in NE and HS vs. NS and even further in HE. The ANT content increased in HE vs. NS. Bcl-2/Bax ratio increased in NE and HS compared to NS. Decreased activities in tissue caspase 3-like (HE vs. NS) and caspase 9-like (HS and HE vs. NS) were observed. Mitochondrial aconitase increased in NE and HS vs. NS. No alterations between groups were observed for caspase 8-like activity, MnSOD, CypD, MDA and -SH. CONCLUSIONS Data confirm that IHH and ET modulate cardiac mitochondria to a protective phenotype characterized by decreased MPTP induction and apoptotic signaling, although without visible addictive effects as initially hypothesized.
Collapse
Affiliation(s)
- J Magalhães
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal.
| | - I O Gonçalves
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - J Lumini-Oliveira
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal; Faculty of Health Sciences, University of Fernando Pessoa, Portugal
| | - I Marques-Aleixo
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - E Passos
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - S Rocha-Rodrigues
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - N G Machado
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - A C Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - D Rizo
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - G Viscor
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - P J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - J R Torrella
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - A Ascensão
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| |
Collapse
|