1
|
Luo Z, Xu M, Zhang L, Zhang H, Xu Z, Xu Z. Glycyrrhizin regulates the HMGB1/P38MAPK signalling pathway in status epilepticus. Mol Med Rep 2023; 27:45. [PMID: 36633134 PMCID: PMC9887508 DOI: 10.3892/mmr.2023.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
In recent decades, studies have reported that inflammation serves key roles in epilepsy and that high mobility group box protein‑1 (HMGB1) may be involved in status epilepticus. However, it has not been reported whether HMGB1 participates in the pathogenesis of status epilepticus through the regulation of the p38 mitogen‑activated protein kinase (p38MAPK) signalling pathway. In the present study, Sprague‑Dawley rats were randomly divided into four groups as follows: Control, status epilepticus (SE), dimethyl sulfoxide treatment (DMSO + SE), and glycyrrhizin treatment (GL + SE) groups. Behavioural changes were then evaluated using the Racine score. In the hippocampus, the protein expression levels of HMGB1 were assessed using western blotting, the neuronal damage was evaluated using haematoxylin and eosin staining and transmission electron microscopy, and the activation of microglia was assessed using immunochemistry and immunofluorescence. The results demonstrated that, in the hippocampal region, HMGB1 existed in neurons and astrocytes and the protein expression levels of HMGB1, p38MAPK and phosphorylated‑p38MAPK were significantly inhibited after treatment with GL. Furthermore, GL could alleviate neuronal injury in the CA1 region of the hippocampus and prevented HMGB1 translocation from the nucleus into the cytoplasm in these areas. These findings expand the understanding of how HMGB1 may participate in SE and lay a foundation for evaluation of HMGB1 as a drug target.
Collapse
Affiliation(s)
- Zhong Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Meng Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China,Correspondence to: Professor Zucai Xu or Professor Zhongxiang Xu, Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China, E-mail: , E-mail:
| | - Zhongxiang Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China,Correspondence to: Professor Zucai Xu or Professor Zhongxiang Xu, Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou 563003, P.R. China, E-mail: , E-mail:
| |
Collapse
|
2
|
Long T, Pan W, Li F, Sheikh SA, Xie Q, Zhang C. Berberine up‐regulates miR‐340‐5p to protect myocardial ischaemia/reperfusion from HMGB1‐mediated inflammatory injury. ESC Heart Fail 2022; 10:931-942. [PMID: 36453191 PMCID: PMC10053273 DOI: 10.1002/ehf2.14235] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
AIMS Myocardial ischaemia/reperfusion injury (MIRI) is a major cause of heart failure after myocardial infarction. Berberine (BBR) presents anti-inflammatory and immunosuppressive properties in many diseases. Our research looked into the therapeutic effects and mechanism of BBR in MIRI. METHODS AND RESULTS MIRI animal and cell models were established. The mRNA and protein expressions were assessed using reverse transcription and quantitative real-time polymerase chain reaction and western blot. The haemodynamic parameters (left ventricular ejection fraction and left ventricular ejection fraction) were detected by echocardiography. The myocardial infarct size and myocardium lesion were assessed by triphenyltetrazolium chloride and haematoxylin-eosin staining. The levels of injury factors were determined by ELISA. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling staining was performed to analyse cell apoptosis. Dual luciferase reporter gene and RNA immunoprecipitation assays were carried out to verify the interaction between miR-340-5p and HMGB1. BBR administration could improve the haemodynamic parameters and infarct size in MIRI rats (all P < 0.05). In MIRI rat model, BBR reduced cardiomyocyte apoptosis and inflammation (all P < 0.05). BBR could promote miR-340-5p expression (0.64 ± 0.21, P < 0.05), which is lowly expressed in MIRI group (0.24 ± 0.10, P < 0.01) in compare with the sham group (0.99 ± 0.01). MiR-340-5p knockdown abolished the protective effects of BBR on H/R-treated cardiomyocytes (all P < 0.05). BBR suppressed the HMGB1/TLR4/NF-κB pathway activation in MIRI. HMGB1 functioned as the target of miR-340-5p, and its silencing reversed the effect of miR-340-5p inhibitor on BBR-treated MIRI. CONCLUSIONS In MIRI, BBR repressed HMGB1-mediated TLR4/NF-κB signalling pathway through miR-340-5p to suppress cardiomyocyte apoptosis and inflammation.
Collapse
Affiliation(s)
- Tianyi Long
- Department of Cardiology Xiangya Hospital, Central South University No. 87 Xiangya Road Changsha 410008 China
- Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha China
| | - Wei Pan
- Department of Cardiology Xiangya Hospital, Central South University No. 87 Xiangya Road Changsha 410008 China
- Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha China
| | - Fei Li
- Department of Cardiology Xiangya Hospital, Central South University No. 87 Xiangya Road Changsha 410008 China
- Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha China
| | - Sayed Ali Sheikh
- Department of Cardiology Xiangya Hospital, Central South University No. 87 Xiangya Road Changsha 410008 China
- Internal Medicine Department, Cardiology, College of Medicine Jouf University Sakakah Saudi Arabia
| | - Qiying Xie
- Department of Cardiology Xiangya Hospital, Central South University No. 87 Xiangya Road Changsha 410008 China
- Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha China
| | - Chenglong Zhang
- Department of Cardiology Xiangya Hospital, Central South University No. 87 Xiangya Road Changsha 410008 China
- Department of National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University Changsha China
| |
Collapse
|
3
|
Zhou YH, Han QF, Gao L, Sun Y, Tang ZW, Wang M, Wang W, Yao HC. HMGB1 Protects the Heart Against Ischemia-Reperfusion Injury via PI3K/AkT Pathway-Mediated Upregulation of VEGF Expression. Front Physiol 2020; 10:1595. [PMID: 32063860 PMCID: PMC7000523 DOI: 10.3389/fphys.2019.01595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/19/2019] [Indexed: 01/02/2023] Open
Abstract
Delivery of exogenous high mobility group box 1 (HMGB1) may exert a beneficial effect on myocardial ischemia-reperfusion (I/R) injury. Since the expression of vascular endothelial growth factor (VEGF) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) in the myocardium mediates the cardioprotective function of basic fibroblast growth factor, we hypothesized that VEGF and the PI3K/Akt signaling pathway also mediate the protective effects of intravenously delivered HMGB1. Thus, the objective of the present study was to analyze the impact of intravenous administration of HMGB1 on the myocardial expression of VEGF, myocardial fibrosis, and cardiac function in rats subjected to acute myocardial I/R. The ischemia was induced by ligation of the left anterior descending coronary artery for 30 min and was followed by 3 h of reperfusion. Myocardial malondialdehyde content, infarct size, and collagen volume fraction decreased, while the activity of superoxide dismutase was increased, the expression of VEGF and p-Akt was upregulated, and cardiac function was improved in the HMGB1-treated group when compared with rats subjected to I/R only (all P < 0.05). However, these effects of HMGB1 were abolished by LY294002. The obtained results demonstrate that the cardioprotective effects of intravenous administration of HMGB1 prior to I/R may be mediated by upregulation of myocardial expression of VEGF, which may activate the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yan-Hong Zhou
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, China
| | - Qian-Feng Han
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, China
| | - Lei Gao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Shandong University, Liaocheng, China
| | - Ying Sun
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, China
| | - Zhan-Wei Tang
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, China
| | - Meng Wang
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, China.,Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Wei Wang
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, China
| |
Collapse
|
4
|
Li YM, Sun JG, Hu LH, Ma XC, Zhou G, Huang XZ. Propofol-mediated cardioprotection dependent of microRNA-451/HMGB1 against myocardial ischemia-reperfusion injury. J Cell Physiol 2019; 234:23289-23301. [PMID: 31188485 DOI: 10.1002/jcp.28897] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Administration of propofol at the time of reperfusion has shown to protect the heart from ischemia and reperfusion (I/R) injury. The aim of the present study was to investigate the molecular mechanism underling the cardioprotective effect of propofol against myocardial I/R injury (MIRI) in vivo and in vitro. Rat heart I/R injury was induced by ligation of the left anterior descending (LAD) artery for 30 min followed by 2-hr reperfusion. Propofol pretreatment (0.01 mg/g) was performed 10 min before reperfusion. In vitro MIRI was investigated in cultured cardiomyocytes H9C2 following hypoxia/reoxygenation (H/R) injuries. Propofol pretreatment in vitro was achieved in the medium supplemented with 25 μmol/L propofol before H/R injuries. Propofol pretreatment significantly increased miRNA-451 expression, decreased HMGB1 expression, reduced infarct size, and I/R-induced cardiomyocyte apoptosis in rat hearts undergoing I/R injuries. Knockdown of miRNA-451 48 hr before I/R injury was found to increase HMGB1 expression, infarct size, and I/R-induced cardiomyocyte apoptosis in rat hearts in the presence of propofol pretreatment. These in vivo findings were reproduced in vivo that knockdown of miRNA-451 48 hr before H/R injuries increased HMGB1 expression and H/R-induced apoptosis in cultured H9C2 supplemented with propofol. In addition, luciferase activity assays and gain-of-function studies found that propofol could decrease HMGB1, the target of miRNA-541. Taken together our findings provide a first demonstration that propofol-mediated cardioprotection against MIRI is dependent of microRNA-451/HMGB1. The study provides a novel target to prevent I/R injury during propofol anesthesia.
Collapse
Affiliation(s)
- Yu-Mei Li
- Department of Anesthesiology, Rizhao People's Hospital, Rizhao, Shandong Province, China
| | - Jin-Guo Sun
- Department of Anesthesiology, Rizhao Central Hospital, Rizhao, Shandong Province, China
| | - Li-Hua Hu
- Department of Anesthesiology, Rizhao Central Hospital, Rizhao, Shandong Province, China
| | - Xian-Chun Ma
- Department of Anesthesiology, Rizhao Central Hospital, Rizhao, Shandong Province, China
| | - Gang Zhou
- Department of Anesthesiology, Rizhao People's Hospital, Rizhao, Shandong Province, China
| | - Xi-Zhao Huang
- Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Abstract
High-mobility group box 1 (HMGB1) is one of the most abundant proteins in eukaryotes and the best characterized damage-associated molecular pattern (DAMP). The biological activities of HMGB1 depend on its subcellular location, context and post-translational modifications. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription regulation and genome stability; in the cytoplasm, its main function is to regulate the autophagic flux while in the extracellular environment, it possesses more complicated functions and it is involved in a large variety of different processes such as inflammation, migration, invasion, proliferation, differentiation and tissue regeneration. Due to this pleiotropy, the role of HMGB1 has been vastly investigated in various pathological diseases and a large number of studies have explored its function in cardiovascular pathologies. However, in this contest, the precise mechanism of action of HMGB1 and its therapeutic potential are still very controversial since is debated whether HMGB1 is involved in tissue damage or plays a role in tissue repair and regeneration. The main focus of this review is to provide an overview of the effects of HMGB1 in different ischemic heart diseases and to discuss its functions in these pathological conditions.
Collapse
|
6
|
Zhou YH, Han QF, Wang LH, Liu T, Meng XY, Wu L, Li T, Jiao YR, Yao HC, Zhang DY. High mobility group box 1 protein attenuates myocardial ischemia reperfusion injury via inhibition of the p38 mitogen-activated protein kinase signaling pathway. Exp Ther Med 2017; 14:1582-1588. [PMID: 28810624 PMCID: PMC5525636 DOI: 10.3892/etm.2017.4653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 04/28/2017] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to determine the effects of high mobility group box 1 protein (HMGB1) on myocardial ischemia reperfusion (I/R) injury in rats following acute myocardial ischemia and investigate the underlying molecular mechanisms of these effects. Male Wistar rats were randomly divided into the following groups (n=10/group): Sham operation; I/R; HMGB50 (50 ng/kg HMGB1 before I/R); HMGB100 (100 ng/kg HMGB1 before I/R); and HMGB200 (200 ng/kg HMGB1 before I/R). Serum cardiac troponin I (cTnI), interleukin (IL)-6 and tumor necrosis factor (TNF)-α levels were subsequently measured. Myocardial levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were also determined. Myocardial infarction size (IS) was determined by 2,3,5-triphenyltetrazolium chloride staining. Myocardial expression of hypoxia inducible factor (HIF)-1α and phosphorylated p38 mitogen-activated protein kinase (P-p38 MAPK) protein was measured using western blotting. The results demonstrated that HMGB1 significantly decreased serum levels of cTnI, IL-6 and TNF-α and myocardial IS in I/R rats compared with the sham group (all P<0.05). HMGB1 also significantly decreased and increased myocardial levels of MDA and SOD, respectively (both P<0.05). HMGB1 significantly increased myocardial expression of HIF-1α and decreased expression of P-p38 MAPK following I/R (both P<0.05). These effects of HMGB1 occurred in a dose-dependent manner. The results of the current study indicate that the cardioprotective effects of intravenous HMGB1 are associated with increased myocardial expression of HIF-1α via inhibition of P-p38 MAPK expression, leading to inhibition of the P-p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Yan-Hong Zhou
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Qian-Feng Han
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lan-Hua Wang
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Tao Liu
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Xiao-Yan Meng
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lei Wu
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Tai Li
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Yue-Ru Jiao
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - De-Yong Zhang
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
7
|
Meng XY, Wu L, Zhou YH, Liu T, Han QF, Zhang DY, Wang LH, Yao HC. High mobility group box 1 might be a novel therapeutic target in ischemia heart disease. Int J Cardiol 2016; 206:42-3. [PMID: 26774828 DOI: 10.1016/j.ijcard.2016.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/01/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Xiao-Yan Meng
- Department of Echocardiography, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Shandong Province, Liaocheng 252000, PR China
| | - Lei Wu
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, 252000, PR China
| | - Yan-Hong Zhou
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, 252000, PR China
| | - Tao Liu
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, 252000, PR China
| | - Qian-Feng Han
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, 252000, PR China
| | - De-Yong Zhang
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, 252000, PR China
| | - Lan-Hua Wang
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, 252000, PR China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People's Hospital and Clinical School of Taishan Medical University, Liaocheng, 252000, PR China.
| |
Collapse
|
8
|
Gao RJ, Zhou YH, Liu T, Han QF, Yao HC. Response to letter regarding "Increased serum HMGB1 level may predict the fatal outcomes in patients with chronic heart failure". Int J Cardiol 2015; 187:434-5. [PMID: 25846652 DOI: 10.1016/j.ijcard.2015.03.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Rui-Jie Gao
- Department of Cardiology, Second People's Hospital of Weifang and Clinical School of Weifang Medical University, Weifang 261041, PR China
| | - Yan-Hong Zhou
- Department of Cardiology, Liaocheng People's Hospital, and Clinical School of Taishan Medical University, Liaocheng 252000, PR China
| | - Tao Liu
- Department of Cardiology, Liaocheng People's Hospital, and Clinical School of Taishan Medical University, Liaocheng 252000, PR China
| | - Qian-Feng Han
- Department of Cardiology, Liaocheng People's Hospital, and Clinical School of Taishan Medical University, Liaocheng 252000, PR China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People's Hospital, and Clinical School of Taishan Medical University, Liaocheng 252000, PR China.
| |
Collapse
|