1
|
Cherubin S, Peoples T, Gillard J, Lakhal-Littleton S, Kurinczuk JJ, Nair M. Systematic review and meta-analysis of prolactin and iron deficiency in peripartum cardiomyopathy. Open Heart 2020; 7:openhrt-2020-001430. [PMID: 33060142 PMCID: PMC7566429 DOI: 10.1136/openhrt-2020-001430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES We conducted a systematic review and meta-analysis of studies that compared levels of molecular biomarkers in women with peripartum cardiomyopathy (PPCM) to those in healthy pregnant and postpartum women to: (1) assess the evidence for prolactin (PRL) metabolism in PPCM, (2) ascertain the evidence for biomarkers of iron deficiency in PPCM, (3) identify other biomarkers associated with PPCM. METHODS We searched Medline, Embase, Cumulated Index to Nursing and Allied Health Literature (CINAHL) and the Global Health Library from inception without language restriction for studies that compared biomarkers levels in PPCM cases to healthy controls. Pooled standardised mean difference (SMD) was generated using a random effects model for the difference in levels of biomarkers. RESULTS Two studies assessed the association of PRL with PPCM, and reported that PPCM cases have higher levels of total PRL. No studies investigated iron metabolism in PPCM. Other biomarkers associated with PPCM included serum levels of natriuretic peptides (SMD=3.77, 95% CI 0.71 to 6.82), albumin (SMD=-0.67, 95% CI -1.01 to -0.32), C-reactive protein (SMD=1.67, 95% CI 0.22 to 3.12), selenium (SMD=-0.73, 95% CI -1.58 to 0.12), cardiac troponins (SMD=1.06, 95% CI 0.33 to 1.80), creatinine (SMD=0.51, 95% CI 0.33 to 0.69), white bloodcells (SMD=0.44, 95 % CI 0.07 to 0.82), haemoglobin (SMD=-0.45, 95% CI -0.64 to-0.26). CONCLUSIONS More robust molecular studies are needed to explore the association between prolactin and PPCM in human subjects and to determine the extent to which iron deficiency (with or without anaemia) contributes to the risk of PPCM.
Collapse
Affiliation(s)
- Sinaida Cherubin
- Nuffield Department of Population Health: National Perinatal Epidemiology Unit, Oxford University, Oxford, UK
| | - Taylar Peoples
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Jessica Gillard
- Medical Science Division, Oxford University, Oxford, Oxfordshire, UK
| | | | - Jennifer J Kurinczuk
- Nuffield Department of Population Health: National Perinatal Epidemiology Unit, Oxford University, Oxford, UK
| | - Manisha Nair
- Nuffield Department of Population Health: National Perinatal Epidemiology Unit, Oxford University, Oxford, UK
| |
Collapse
|
2
|
Aryan L, Medzikovic L, Umar S, Eghbali M. Pregnancy-associated cardiac dysfunction and the regulatory role of microRNAs. Biol Sex Differ 2020; 11:14. [PMID: 32252821 PMCID: PMC7137306 DOI: 10.1186/s13293-020-00292-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Many crucial cardiovascular adaptations occur in the body during pregnancy to ensure successful gestation. Maladaptation of the cardiovascular system during pregnancy can lead to complications that promote cardiac dysfunction and may lead to heart failure (HF). About 12% of pregnancy-related deaths in the USA have been attributed to HF and the detrimental effects of cardiovascular complications on the heart can be long-lasting, pre-disposing the mother to HF later in life. Indeed, cardiovascular complications such as gestational diabetes mellitus, preeclampsia, gestational hypertension, and peripartum cardiomyopathy have been shown to induce cardiac metabolic dysfunction, oxidative stress, fibrosis, apoptosis, and diastolic and systolic dysfunction in the hearts of pregnant women, all of which are hallmarks of HF. The exact etiology and cardiac pathophysiology of pregnancy-related complications is not yet fully deciphered. Furthermore, diagnosis of cardiac dysfunction in pregnancy is often made only after clinical symptoms are already present, thus necessitating the need for novel diagnostic and prognostic biomarkers. Mounting data demonstrates an altered expression of maternal circulating miRNAs during pregnancy affected by cardiovascular complications. Throughout the past decade, miRNAs have become of growing interest as modulators and biomarkers of pathophysiology, diagnosis, and prognosis in cardiac dysfunction. While the association between pregnancy-related cardiovascular complications and cardiac dysfunction or HF is becoming increasingly evident, the roles of miRNA-mediated regulation herein remain poorly understood. Therefore, this review will summarize current reports on pregnancy-related cardiovascular complications that may lead to cardiac dysfunction and HF during and after pregnancy in previously healthy women, with a focus on the pathophysiological role of miRNAs.
Collapse
Affiliation(s)
- Laila Aryan
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Lejla Medzikovic
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Soban Umar
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA.
| |
Collapse
|
3
|
Liu Y, Liu S, Wu C, Huang W, Xu B, Lian S, Wang L, Yue S, Chen N, Zhu Z. PD-1-Mediated PI3K/Akt/mTOR, Caspase 9/Caspase 3 and ERK Pathways Are Involved in Regulating the Apoptosis and Proliferation of CD4 + and CD8 + T Cells During BVDV Infection in vitro. Front Immunol 2020; 11:467. [PMID: 32256500 PMCID: PMC7089960 DOI: 10.3389/fimmu.2020.00467] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/28/2020] [Indexed: 12/26/2022] Open
Abstract
Acute infection of bovine viral diarrhea virus (BVDV) is associated with immune dysfunction and can cause peripheral blood lymphopenia and lymphocyte apoptosis. Our previous study has confirmed that programmed death-1 (PD-1) blockade inhibits peripheral blood lymphocyte (PBL) apoptosis and restores proliferation and anti-viral immune functions of lymphocytes after BVDV infection in vitro. However, the immunomodulatory effects of PD-1 pathway on major PBL subsets are unclear and their underlying molecular mechanisms need to be further studied. Therefore, in this study, we examined PD-1 expression in bovine PBL subsets after BVDV infection in vitro and analyzed the effects of PD-1 blockade on the apoptosis and proliferation of CD4+ and CD8+ T cells and expression of PD-1 downstream signaling molecules. The results showed that PD-1 expression was enhanced on CD4+ and CD8+ T cells, but not on CD21+ B cells after cytopathic (CP) BVDV (strain NADL) and non-cytopathic (NCP) BVDV (strain KD) infection in vitro and PD-1 blockade significantly reduced the apoptosis of CD4+ and CD8+ T cells after these two strains infection. Remarkably, PD-1 blockade significantly increased the proliferation of CD4+ and CD8+ T cells after CP BVDV infection, but only significantly increased the proliferation of CD4+ T cells after NCP BVDV infection. In addition, we confirmed that PD-1-mediated PI3K/Akt/mTOR, caspase 9/caspase 3 and ERK pathways are involved in regulating the apoptosis and proliferation of CD4+ and CD8+ T cells during BVDV infection in vitro. Notably, ERK is involved in the regulation mechanism PD-1 mediated only when the cells are infected with CP BVDV. Our findings provide a scientific basis for exploring the molecular mechanism of immune dysfunction caused by acute BVDV infection.
Collapse
Affiliation(s)
- Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.,Engineering Research Center of Prevention and Control of Cattle Diseases, Daqing, China.,Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
| | - Shanshan Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chenhua Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjing Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shan Yue
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Nannan Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.,Engineering Research Center of Prevention and Control of Cattle Diseases, Daqing, China.,Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
| |
Collapse
|
4
|
Abstract
Purpose of Review Peripartum cardiomyopathy (PPCM) is an idiopathic disorder defined as heart failure occurring in women during the last month of pregnancy and up to 5 months postpartum. In this review, we outline recent reports about the disease pathogenesis and management and highlight the use of diagnosis and prognosis biomarkers. Recent Findings Novel data strengthen the implication of endothelial function in PPCM pathogenesis. The first international registry showed that patient presentations were similar globally, with heterogeneity in patient management and outcome. Summary Despite large improvement in patient management and treatment, there is still a sub-group of women who die from PPCM or who will not recover their cardiac function. Remarkable advances in the comprehension of disease incidence, pathogenesis, and prognosis could be determined with multi-center and international registries. Clinical Trials ClinicalTrials.gov Identifier: NCT02590601
Collapse
|
5
|
|
6
|
Wen P, Wei X, Liang G, Wang Y, Yang Y, Qin L, Pang W, Qin G, Li H, Jiang Y, Wu Q. Long-term exposure to low level of fluoride induces apoptosis via p53 pathway in lymphocytes of aluminum smelter workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:2671-2680. [PMID: 30478774 DOI: 10.1007/s11356-018-3726-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Long-term occupational exposure to low level of fluoride can induce oxidative stress and apoptosis in many cells, including lymphocyte. However, the underlying mechanism remains unclear. Hence, this study was designed to explore the potential oxidative stress and apoptosis of long-term occupational exposure to low level of fluoride in aluminum smelter workers. A total of 120 aluminum smelter workers were recruited in control, low-, middle-, and high-fluoride exposure groups with 30 workers for each group. The peripheral blood samples were collected, centrifuged, and isolated to obtain serum and lymphocyte suspensions. The air and serum fluoride concentrations were detected by fluoride ion-selective electrode method. The lymphocytic apoptosis rate, DNA damage, oxidative stress, and mRNA levels of p53, Bcl-2, and Bax were assessed by Annexin V/PI staining, comet assay, attenuated total reflectance Fourier transform infrared spectroscopy and real-time polymerase chain reaction, respectively. Results showed that the air and serum fluoride concentrations of fluoride-exposed groups were higher than those of the control group (p < 0.05). Fluoride exposure might induce apoptosis, DNA damage and oxidative stress in a dose-dependent manner in lymphocytes (p < 0.05). The expression levels of p53 and Bax were increased with fluoride exposure in lymphocytes (p < 0.05), whereas the Bcl-2 expression was decreased but not significantly. Taken together, these observations indicate that long-term occupational exposure to low level of fluoride may lead to oxidative stress and induce apoptosis through the p53-dependent pathway in peripheral blood lymphocytes of aluminum smelter workers. Serum fluoride level may be the potential biomarker of fluoride exposure.
Collapse
Affiliation(s)
- Pingjing Wen
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong, Nanning, Guangxi, 530021, People's Republic of China
- Department of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, Guangxi, People's Republic of China
| | - Xiaomin Wei
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong, Nanning, Guangxi, 530021, People's Republic of China
| | - Guiqiang Liang
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, No. 13 Wuhe Avenue, Nanning, Guangxi, 530200, People's Republic of China
| | - Yanfei Wang
- Primary Care Division, Maternal and Child Health Hospital, Chongqing, People's Republic of China
| | - Yiping Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong, Nanning, Guangxi, 530021, People's Republic of China
| | - Lilin Qin
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong, Nanning, Guangxi, 530021, People's Republic of China
| | - Weiyi Pang
- Department of Occupational and Environmental Health, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Guangqiu Qin
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, No. 13 Wuhe Avenue, Nanning, Guangxi, 530200, People's Republic of China
| | - Hai Li
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, No. 13 Wuhe Avenue, Nanning, Guangxi, 530200, People's Republic of China
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22 Shuangyong, Nanning, Guangxi, 530021, People's Republic of China.
| | - Qijun Wu
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, No. 13 Wuhe Avenue, Nanning, Guangxi, 530200, People's Republic of China.
| |
Collapse
|