1
|
Huang X, Shen Y, Liu Y, Zhang H. Current status and future directions in pediatric ventricular assist device. Heart Fail Rev 2024; 29:769-784. [PMID: 38530587 DOI: 10.1007/s10741-024-10396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
A ventricular assist device (VAD) is a form of mechanical circulatory support that uses a mechanical pump to partially or fully take over the function of a failed heart. In recent decades, the VAD has become a crucial option in the treatment of end-stage heart failure in adult patients. However, due to the lack of suitable devices and more complicated patient profiles, this therapeutic approach is still not widely used for pediatric populations. This article reviews the clinically available devices, adverse events, and future directions of design and implementation in pediatric VADs.
Collapse
Affiliation(s)
- Xu Huang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
| | - Yi Shen
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
| | - Yiwei Liu
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
| | - Hao Zhang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
| |
Collapse
|
2
|
Kato H, Iwahana T, Ono R, Okada S, Matsumiya G, Kobayashi Y. Hemodynamic parameters at rest predicting exercise capacity in patients supported with left ventricular assist device. J Artif Organs 2024; 27:7-14. [PMID: 36933087 DOI: 10.1007/s10047-023-01388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/26/2023] [Indexed: 03/19/2023]
Abstract
Left ventricular assist devices improve prognosis and quality of life, but exercise capacity remains limited in most patients after device implantation. Left ventricular assist device optimization through right heart catheterization reduces device-related complications. However, hemodynamic parameters associated with exercise capacity under optimized conditions. The aim of this study was to elucidate the predictors of exercise capacity from hemodynamic parameters at rest after left ventricular assist device optimization. We retrospectively reviewed 24 patients who underwent a ramp test with right heart catheterization, echocardiography and cardiopulmonary exercise testing more than 6 months after left ventricular assist device implantation. Pump speed was optimized to a lower setting that achieved right atrial pressure < 12 mmHg, pulmonary capillary wedge pressure < 18 mmHg, and cardiac index > 2.2 L/min/m2, then exercise capacity was assessed by cardiopulmonary exercise testing. After left ventricular assist device optimization, the mean right atrial pressure, pulmonary capillary wedge pressure, cardiac index, and peak oxygen consumption were 7 ± 5 mmHg, 10 ± 7 mmHg, 2.7 ± 0.5 L/min/m2, and 13.2 ± 3.0 mL/min/kg, respectively. Pulse pressure, stroke volume, right atrial pressure, mean pulmonary artery pressure, and pulmonary capillary wedge pressure were significantly associated with peak oxygen consumption. Multivariate linear regression analysis of factors predicting peak oxygen consumption revealed that pulse pressure, right atrial pressure, and aortic insufficiency remained independent predictors (β = 0.401, p = 0.007; β = - 0.558, p < 0.001; β = - 0.369, p = 0.010, respectively). Our findings suggests that cardiac reserve, volume status, right ventricular function, and aortic insufficiency predict exercise capacity in patients with a left ventricular assist device.
Collapse
Affiliation(s)
- Hirotoshi Kato
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, 260-8677, Japan.
| | - Togo Iwahana
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, 260-8677, Japan
| | - Ryohei Ono
- Department of Cardiovascular Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sho Okada
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, 260-8677, Japan
| | - Goro Matsumiya
- Department of Cardiovascular Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba, Chiba, 260-8677, Japan
| |
Collapse
|
3
|
Chwiedź A, Minarowski Ł, Mróz RM, Razak Hady H. Non-Invasive Cardiac Output Measurement Using Inert Gas Rebreathing Method during Cardiopulmonary Exercise Testing-A Systematic Review. J Clin Med 2023; 12:7154. [PMID: 38002766 PMCID: PMC10671909 DOI: 10.3390/jcm12227154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The use of inert gas rebreathing for the non-invasive cardiac output measurement has produced measurements comparable to those obtained by various other methods. However, there are no guidelines for the inert gas rebreathing method during a cardiopulmonary exercise test (CPET). In addition, there is also a lack of specific standards for assessing the non-invasive measurement of cardiac output during CPET, both for healthy patients and those suffering from diseases and conditions. AIM This systematic review aims to describe the use of IGR for a non-invasive assessment of cardiac output during cardiopulmonary exercise testing and, based on the information extracted, to identify a proposed CPET report that includes an assessment of the cardiac output using the IGR method. METHODS This systematic review was conducted by PRISMA (Preferred Reporting Items for Systematic Reviews and Meta Analyses) guidelines. PubMed, Web of Science, Scopus, and Cochrane Library databases were searched from inception until 29 December 2022. The primary search returned 261 articles, of which 47 studies met the inclusion criteria for this review. RESULTS AND CONCLUSIONS This systematic review provides a comprehensive description of protocols, indications, technical details, and proposed reporting standards for a non-invasive cardiac output assessment using IGR during CPET. It highlights the need for standardized approaches to CPET and identifies gaps in the literature. The review critically analyzes the strengths and limitations of the studies included and offers recommendations for future research by proposing a combined report from CPET-IGR along with its clinical application.
Collapse
Affiliation(s)
- Agnieszka Chwiedź
- I Department of General and Endocrine Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland
- II Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland
| | - Łukasz Minarowski
- II Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland
| | - Robert M Mróz
- II Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland
| | - Hady Razak Hady
- I Department of General and Endocrine Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
4
|
Cunha G, Apostolo A, De Martino F, Salvioni E, Matavelli I, Agostoni P. Exercise oscillatory ventilation: the past, present, and future. Eur J Prev Cardiol 2023; 30:ii22-ii27. [PMID: 37819229 DOI: 10.1093/eurjpc/zwad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 10/13/2023]
Abstract
Exercise oscillatory ventilation (EOV) is a fascinating event that can be appreciated in the cardiopulmonary exercise test and is characterized by a cyclic fluctuation of minute ventilation, tidal volume, oxygen uptake, carbon dioxide production, and end-tidal pressure for oxygen and carbon dioxide. Its mechanisms stem from a dysregulation of the normal control feedback of ventilation involving one or more of its components, namely, chemoreflex delay, chemoreflex gain, plant delay, and plant gain. In this review, we intend to breakdown therapeutic targets according to pathophysiology and revise the prognostic value of exercise oscillatory ventilation in the setting of heart failure and other diagnoses.
Collapse
Affiliation(s)
- Gonçalo Cunha
- Cardiology department, Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, 2790-134 Carnaxide, Portugal
| | - Anna Apostolo
- Heart failure department, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | | | | - Irene Matavelli
- Heart failure department, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Piergiuseppe Agostoni
- Heart failure department, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Apostolo A, Vignati C, Cittar M, Baracchini N, Mushtaq S, Cattadori G, Sciomer S, Trombara F, Piepoli M, Agostoni P. Determinants of exercise performance in heart failure patients with extremely reduced cardiac output and left ventricular assist device. Eur J Prev Cardiol 2023; 30:ii63-ii69. [PMID: 37819220 DOI: 10.1093/eurjpc/zwad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/13/2023]
Abstract
The evaluation of exercise capacity and cardiac output (QC) is fundamental in the management of patients with advanced heart failure (AdHF). QC and peak oxygen uptake (VO2) have a pivotal role in the prognostic stratification and in the definition of therapeutic interventions, including medical therapies and devices, but also specific treatments such as heart transplantation and left ventricular assist device (LVAD) implantation. Due to the intertwined relationship between exercise capacity and daily activities, exercise intolerance dramatically has impact on the quality of life of patients. It is a multifactorial process that includes alterations in central and peripheral haemodynamic regulation, anaemia and iron deficiency, pulmonary congestion, pulmonary hypertension, and peripheral O2 extraction. This paper aims to review the pathophysiological background of exercise limitations in HF patients and to examine the complex physiology of exercise in LVAD recipients, analysing the interactions between the cardiopulmonary system, the musculoskeletal system, the autonomic nervous system, and the pump. We performed a literature review to highlight the current knowledge on this topic and possible interventions that can be implemented to increase exercise capacity in AdHF patients-including administration of levosimendan, rehabilitation, and the intriguing field of LVAD speed changes. The present paper confirms the role of CPET in the follow-up of this peculiar population and the impact of exercise capacity on the quality of life of AdHF patients.
Collapse
Affiliation(s)
- Anna Apostolo
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138, Milano, Italy
| | - Carlo Vignati
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138, Milano, Italy
- Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Via della Commenda 19, 20122, Milano, Italy
| | - Marco Cittar
- Cardiovascular Department, 'Azienda Sanitaria Universitaria Giuliano-Isontina', Via Costantino Costantinides, 2, 34128, Trieste, Italy
| | - Nikita Baracchini
- Cardiovascular Department, 'Azienda Sanitaria Universitaria Giuliano-Isontina', Via Costantino Costantinides, 2, 34128, Trieste, Italy
| | - Saima Mushtaq
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138, Milano, Italy
| | - Gaia Cattadori
- Cardio-rehabilitation Unit, Multimedica IRCCS, Via Milanese, 300, 20099, Milano, Italy
| | - Susanna Sciomer
- Dipartimento di Scienze Cliniche, Internistiche, Anestesiologiche e Cardiovascolari, 'Sapienza', Rome University, Viale dell'Università, 37, 00185, Rome, Italy
| | - Filippo Trombara
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138, Milano, Italy
| | - Massimo Piepoli
- Clinical Cardiology, Policlinico San Donato IRCCS, University of Milan, Piazza Edmondo Malan, 2, 20097, Milan, Italy
- Department of Preventive Cardiology, Wroclaw Medical University, Wybrzeże L. Pasteura 1, 50-367, Wroclaw, Poland
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, 20138, Milano, Italy
- Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Via della Commenda 19, 20122, Milano, Italy
| |
Collapse
|
6
|
Mattavelli I, Vignati C, Farina S, Apostolo A, Cattadori G, De Martino F, Pezzuto B, Zaffalon D, Agostoni P. Beyond VO2: the complex cardiopulmonary exercise test. Eur J Prev Cardiol 2023; 30:ii34-ii39. [PMID: 37819225 DOI: 10.1093/eurjpc/zwad154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 10/13/2023]
Abstract
Cardiopulmonary exercise test (CPET) is a valuable diagnostic tool with a specific application in heart failure (HF) thanks to the strong prognostic value of its parameters. The most important value provided by CPET is the peak oxygen uptake (peak VO2), the maximum rate of oxygen consumption attainable during physical exertion. According to the Fick principle, VO2 equals cardiac output (Qc) times the arteriovenous content difference [C(a-v)O2], where Ca is the arterial oxygen and Cv is the mixed venous oxygen content, respectively; therefore, VO2 can be reduced both by impaired O2 delivery (reduced Qc) or extraction (reduced arteriovenous O2 content). However, standard CPET is not capable of discriminating between these different impairments, leading to the need for 'complex' CPET technologies. Among non-invasive methods for Qc measurement during CPET, inert gas rebreathing and thoracic impedance cardiography are the most used techniques, both validated in healthy subjects and patients with HF, at rest and during exercise. On the other hand, the non-invasive assessment of peripheral muscle perfusion is possible with the application of near-infrared spectroscopy, capable of measuring tissue oxygenation. Measuring Qc allows, by having haemoglobin values available, to discriminate how much any VO2 deficit depends on the muscle, anaemia or heart.
Collapse
Affiliation(s)
- Irene Mattavelli
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan 20138, Italy
| | - Carlo Vignati
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan 20138, Italy
- Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Stefania Farina
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan 20138, Italy
- Cytogenetics and Medical Genetics, University of Milano-Bicocca, Milan, Italy
| | - Anna Apostolo
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan 20138, Italy
| | - Gaia Cattadori
- Multimedica IRCCS, Unità Operativa Cardiologia Riabilitativa, Multimedica IRCCS, Milan, Italy
| | - Fabiana De Martino
- Casa di Cura Tortorella, Dipartimento Medico, Unità funzionale di Cardiologia, Casa di Cura Tortorella, Salerno, Italy
| | - Beatrice Pezzuto
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan 20138, Italy
| | - Denise Zaffalon
- Cardiovascular Department, 'Azienda Sanitaria Universitaria Giuliano-Isontina', Trieste, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Via Parea, 4, Milan 20138, Italy
- Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Oxygen Uptake During Activities of Daily Life in Patients Treated with a Left Ventricular Assist Device. J Heart Lung Transplant 2022; 41:982-990. [DOI: 10.1016/j.healun.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
|
8
|
Hiraiwa H, Okumura T, Sawamura A, Araki T, Mizutani T, Kazama S, Kimura Y, Shibata N, Oishi H, Kuwayama T, Kondo T, Furusawa K, Morimoto R, Adachi T, Yamada S, Mutsuga M, Usui A, Murohara T. Relationship between spleen size and exercise tolerance in advanced heart failure patients with a left ventricular assist device. BMC Res Notes 2022; 15:40. [PMID: 35144676 PMCID: PMC8832641 DOI: 10.1186/s13104-022-05939-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Spleen volume increases in patients with advanced heart failure (HF) after left ventricular assist device (LVAD) implantation. However, the relationship between spleen volume and exercise tolerance (peak oxygen consumption [VO2]) in these patients remains unknown. In this exploratory study, we enrolled 27 patients with HF using a LVAD (median age: 46 years). Patients underwent blood testing, echocardiography, right heart catheterization, computed tomography (CT), and cardiopulmonary exercise testing. Spleen size was measured using CT volumetry, and the correlations/causal relationships of factors affecting peak VO2 were identified using structural equation modeling. RESULTS The median spleen volume was 190.0 mL, and peak VO2 was 13.2 mL/kg/min. The factors affecting peak VO2 were peak heart rate (HR; β = 0.402, P = .015), pulmonary capillary wedge pressure (PCWP; β = - 0.698, P = .014), right ventricular stroke work index (β = 0.533, P = .001), blood hemoglobin concentration (β = 0.359, P = .007), and spleen volume (β = 0.215, P = .041). Spleen volume correlated with peak HR, PCWP, and hemoglobin concentration, reflecting sympathetic activity, cardiac preload, and oxygen-carrying capacity, respectively, and was thus related to peak VO2. These results suggest an association between spleen volume and exercise tolerance in advanced HF.
Collapse
Affiliation(s)
- Hiroaki Hiraiwa
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Akinori Sawamura
- Department of Cardiology, Ichinomiya Municipal Hospital, 2-2-22 Bunkyo, Ichinomiya, 491-8558, Japan
| | - Takashi Araki
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Mizutani
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shingo Kazama
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuki Kimura
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Naoki Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hideo Oishi
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tasuku Kuwayama
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toru Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenji Furusawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryota Morimoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takuji Adachi
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Sumio Yamada
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Masato Mutsuga
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
9
|
Kerrigan DJ, Cowger JA, Keteyian SJ. Exercise in patients with left ventricular devices: The interaction between the device and the patient. Prog Cardiovasc Dis 2021; 70:33-39. [PMID: 34921848 DOI: 10.1016/j.pcad.2021.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/28/2022]
Abstract
Advances in the engineering of surgically implanted, durable left ventricular assist devices (LVAD) has led to improvements in the two-year survival of patients on LVAD support, which is now comparable to that of heart transplant (HT) recipients. And with the advent of magnetic levitation technology, both the survival rate and average time on LVAD support are expected to improve even further. However, despite these advances, the functional capacity of patients on LVAD support remains reduced compared to those who received a HT. A few small clinical trials have shown improvement in functional capacity with exercise training. Peak oxygen uptake improves modestly (10%-20%) with exercise training, suggesting a possible celling-effect linked to the ability of the LVAD to increase flow during exercise. This paper reviews both (a) the effect of the LVAD on the cardiorespiratory responses during a single, acute bout of exercise up to maximum and (b) the central and peripheral adaptations that occur among patients with an LVAD who undergo an exercise training regimen. We also address the tenets of the exercise prescription that are unique to patients with a durable LVAD.
Collapse
Affiliation(s)
- Dennis J Kerrigan
- Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA.
| | - Jennifer A Cowger
- Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Steven J Keteyian
- Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
10
|
Scaglione A, Panzarino C, Modica M, Tavanelli M, Pezzano A, Grati P, Racca V, Toccafondi A, Bordoni B, Verde A, Cartella I, Castiglioni P. Short- and long-term effects of a cardiac rehabilitation program in patients implanted with a left ventricular assist device. PLoS One 2021; 16:e0259927. [PMID: 34851984 PMCID: PMC8635401 DOI: 10.1371/journal.pone.0259927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
Abstract
The efficacy of cardiac rehabilitation in heart-failure patients who received a left-ventricular assist device (LVAD) instead of heart transplantation (HTx) is still unclear. This study aims to evaluate whether cardiac rehabilitation is beneficial in LVAD as HTx patients in the short term and whether its effects in LVAD patients persist over time. Twenty-five LVAD patients were evaluated by functional and psychological tests at admission (T0) and discharge (T1) of a 4-week inpatient structured rehabilitation program, and follow-ups 3 (T2), 6 (T3), and 12 months (T4) after discharge. Twenty-five matched HTx patients were also studied from T0 to T1 to compare the improvements in the six-minute walk test (6MWT). The quality-of-life scores substantially improved in LVAD patients and the 6MWT showed the same functional recovery as in HTx patients from T0 to T1. After T1, numerous LVAD patients withdrew from the study. However, the 6MWT outcome increased further from T1 to T3, with a positive trend during the follow-ups. Hemoglobin and the ventilatory performance increased, and the psychological perception of heart-failure symptoms and pain further improved at T2. In conclusion, exercise-based rehabilitation programs provide similar beneficial effects in LVAD and HTx patients, without deterioration in LVAD patients up to 12 months after discharge.
Collapse
Affiliation(s)
- Anna Scaglione
- Cardiology Rehabilitation Center, Santa Maria Nascente Institute, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Claudia Panzarino
- Cardiology Rehabilitation Center, Santa Maria Nascente Institute, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Maddalena Modica
- Cardiology Rehabilitation Center, Santa Maria Nascente Institute, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Monica Tavanelli
- Cardiology Rehabilitation Center, Santa Maria Nascente Institute, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Antonio Pezzano
- Cardiology Rehabilitation Center, Santa Maria Nascente Institute, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Paola Grati
- Cardiology Rehabilitation Center, Santa Maria Nascente Institute, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Vittorio Racca
- Cardiology Rehabilitation Center, Santa Maria Nascente Institute, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Anastasia Toccafondi
- Cardiology Rehabilitation Center, Santa Maria Nascente Institute, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Bruno Bordoni
- Cardiology Rehabilitation Center, Santa Maria Nascente Institute, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Alessandro Verde
- Heart Failure and Heart Transplant Program, CardioThoracic and Vascular Department, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Iside Cartella
- Heart Failure and Heart Transplant Program, CardioThoracic and Vascular Department, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | |
Collapse
|
11
|
Christle JW, Moneghetti KJ, Duclos S, Mueller S, Moayedi Y, Khush KK, Haddad F, Hiesinger W, Myers J, Ashley EA, Teuteberg JJ, Wheeler MT, Banerjee D. Cardiopulmonary Exercise Testing With Echocardiography to Assess Recovery in Patients With Ventricular Assist Devices. ASAIO J 2021; 67:1134-1138. [PMID: 34570726 DOI: 10.1097/mat.0000000000001383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The left ventricular assist device (LVAD) is an established treatment for select patients with end-stage heart failure. Some patients recovered and are considered for explantation. Assessing recovery involves exercise testing and echo ramping on full and minimal LVAD support. Combined cardiopulmonary exercise testing with simultaneous echo ramping (CPET-R) has not been well studied. Patients were included if they had CPET within the previous 6 months, were clinically stable, and had an INR >2.0 on the day of examination. Patients had CPET-R on two occasions within 14 days: (a) with LVAD at therapeutic speed and (b) with LVAD at the lowest speed possible. Six patients were between 29 and 75 years (two female). One patient did not complete a turn-down test due to evidence of ischemia on initial CPET-R subsequently confirmed as a significant coronary artery stenosis on angiography. There were no significant differences in CPET or echo metrics between LVAD speeds. Two patients were explanted due to presumed LV recovery and remained event free for 30 and 47 months, respectively. Serial CPET-R seems safe and feasible for the evaluation of LV and global function and may result in improved clinical decision making for LVAD explantation.
Collapse
Affiliation(s)
- Jeffrey W Christle
- From the Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
- Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California
| | - Kegan J Moneghetti
- From the Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
- Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California
| | - Sebastien Duclos
- From the Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
- Section of Heart Failure, Cardiac Transplant, Department of Medicine, Mechanical Circulatory Support, Stanford University, Stanford, California
| | - Stephan Mueller
- From the Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
- Department of Prevention, Rehabilitation and Sports Medicine, Technical University of Munich, Munich, Germany
| | - Yasbanoo Moayedi
- From the Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
- Section of Heart Failure, Cardiac Transplant, Department of Medicine, Mechanical Circulatory Support, Stanford University, Stanford, California
- Ted Rogers Centre of Excellence in Heart Function, Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Kiran K Khush
- From the Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
- Section of Heart Failure, Cardiac Transplant, Department of Medicine, Mechanical Circulatory Support, Stanford University, Stanford, California
| | - Francois Haddad
- From the Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
- Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California
- Section of Heart Failure, Cardiac Transplant, Department of Medicine, Mechanical Circulatory Support, Stanford University, Stanford, California
| | - William Hiesinger
- From the Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
- Section of Heart Failure, Cardiac Transplant, Department of Medicine, Mechanical Circulatory Support, Stanford University, Stanford, California
| | - Jonathan Myers
- From the Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
- Division of Cardiovascular Medicine, Palo Alto Veterans Administration, Palo Alto, California
| | - Euan A Ashley
- From the Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
- Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California
| | - Jeffrey J Teuteberg
- From the Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
- Section of Heart Failure, Cardiac Transplant, Department of Medicine, Mechanical Circulatory Support, Stanford University, Stanford, California
| | - Matthew T Wheeler
- From the Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
- Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California
- Section of Heart Failure, Cardiac Transplant, Department of Medicine, Mechanical Circulatory Support, Stanford University, Stanford, California
| | - Dipanjan Banerjee
- From the Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
- Department of Cardiovascular Medicine, The Queen's Medical Center, Honolulu, Hawaii
| |
Collapse
|
12
|
Vignati C, De Martino F, Muratori M, Salvioni E, Tamborini G, Bartorelli A, Pepi M, Alamanni F, Farina S, Cattadori G, Mantegazza V, Agostoni P. Rest and exercise oxygen uptake and cardiac output changes 6 months after successful transcatheter mitral valve repair. ESC Heart Fail 2021; 8:4915-4924. [PMID: 34551212 PMCID: PMC8712840 DOI: 10.1002/ehf2.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/25/2021] [Accepted: 07/05/2021] [Indexed: 11/11/2022] Open
Abstract
Aims Changes in peak exercise oxygen uptake (VO2) and cardiac output (CO) 6 months after successful percutaneous edge‐to‐edge mitral valve repair (pMVR) in severe primary (PMR) and functional mitral regurgitation (FMR) patients are unknown. The aim of the study was to assess the efficacy of pMVR at rest by echocardiography, VO2 and CO (inert gas rebreathing) measurement and during cardiopulmonary exercise test with CO measurement. Methods and results We evaluated 145 and 115 patients at rest and 98 and 66 during exercise before and after pMVR, respectively. After successful pMVR, significant reductions in MR and NYHA class were observed in FMR and PMR patients. Cardiac ultrasound showed reverse remodelling (left ventricular end‐diastolic volume from 158 ± 63 mL to 147 ± 64, P < 0.001; ejection fraction from 51 ± 15 to 48 ± 14, P < 0.001; pulmonary artery systolic pressure (PASP) from 43 ± 13 to 38 ± 8 mmHg, P < 0.001) in the entire population. These changes were significant in PMR (n = 62) and a trend in FMR (n = 53), except for PASP, which decreased in both groups. At rest, CO and stroke volume (SV) increased in FMR with a concomitant reduction in arteriovenous O2 content difference [ΔC(a‐v)O2]. Peak exercise, CO and SV increased significantly in both groups (CO from 5.5 ± 1.4 L/min to 6.3 ± 1.5 and from 6.2 ± 2.4 to 6.7 ± 2.0, SV from 57 ± 19 mL to 66 ± 20 and from 62 ± 20 to 69 ± 20, in FMR and PMR, respectively), whereas peak VO2 was unchanged and ΔC(a‐v)O2 decreased. Conclusions These data confirm pMVR‐induced clinical improvement and reverse ventricular remodelling at a 6‐month analysis and show, in spite of an increase in CO, an unchanged exercise performance, which is achieved through a ‘more physiological’ blood flow distribution and O2 extraction behaviour. Direct rest and exercise CO should be measured to assess pMVR efficacy.
Collapse
Affiliation(s)
- Carlo Vignati
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | | | | | | | | | - Antonio Bartorelli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Mauro Pepi
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Francesco Alamanni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | | | | | | | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Exercise causes various dynamic changes in all body parts either in healthy subject or in heart failure (HF) patients. The present review of current knowledge about HF patients with reduced ejection fraction focuses on dynamic changes along a "metabo-hemodynamic" perspective. RECENT FINDINGS Studies on the dynamic changes occurring during exercise span many years. Thanks to the availability of advanced methods, it is nowadays possible to properly characterize respiratory, hemodynamic, and muscular function adjustments and their mismatch with the pulmonary and systemic circulations. Exercise is a dynamic event that involves several body functions. In HF patients, it is important to know at what level the limitation takes place in order to better manage these patients and to optimize therapeutic strategies.
Collapse
|
14
|
Lilliu M, Onorati F, Luciani GB, Faggian G. Effects of echo-optimization of left ventricular assist devices on functional capacity, a randomized controlled trial. ESC Heart Fail 2021; 8:2846-2855. [PMID: 33934564 PMCID: PMC8318497 DOI: 10.1002/ehf2.13359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 11/30/2022] Open
Abstract
Aims After the implantation of a left ventricular assist device (LVAD), many patients continue to experience exercise intolerance. VAFRACT trial evaluates the additional benefit of LVAD echo‐guided optimization (EO) on functional capacity (FC), measured by cardiopulmonary exercise test (CPET), and quality of life (QoL). Methods and results Twenty‐seven patients were randomized in a 1:1 ratio to EO (EO group) vs. standard settings (CONTROL group) at least after 3 months from LVAD implant procedure. The optimal device speed was defined as the one that allows an intermittent aortic valve opening and a neutral position of the interventricular septum without increasing aortic or tricuspid regurgitation and preserving right ventricular function. The primary endpoint was peak oxygen uptake (VO2 peak) change after 3 months. Echo‐guided optimization significantly improves VO2 peak (from 13.2 ± 2.5 to 14.2 ± 2.5 mL/kg/min; P < 0.001), oxygen pulse (from 9.75 ± 1.46 to 10.75 ± 2.2 mL; P < 0.001), CPET exercise time (from 490 ± 98 to 526 ± 116 s; P = 0.02), 6 min walk distance (from 363 ± 54 to 391 ± 52 m; P = 0.04), and QoL, using EuroQol Five Dimensions 3L (from 0.796 ± 0.1 to 0.85 ± 0.08; P < 0.001) and the Kansas City Cardiomyopathy Questionnaire (from 81.6 ± 6.9 to 84.6 ± 5.6; P = 0.025). Conclusions Echo‐guided optimization can significantly influence the FC and the QoL of LVAD patients. This procedure should represent a fundamental step in their clinical management, through the establishment of consolidated follow‐up protocols. Our study may represent a starting point for a future, adequately powered clinical trial with a longer term follow‐up.
Collapse
Affiliation(s)
- Marzia Lilliu
- Division of Cardiac Surgery, Department of Surgery, University of Verona, Piazzale Aristide Stefani, 1, Verona, 37126, Italy
| | - Francesco Onorati
- Division of Cardiac Surgery, Department of Surgery, University of Verona, Piazzale Aristide Stefani, 1, Verona, 37126, Italy
| | - Giovanni Battista Luciani
- Division of Cardiac Surgery, Department of Surgery, University of Verona, Piazzale Aristide Stefani, 1, Verona, 37126, Italy
| | - Giuseppe Faggian
- Division of Cardiac Surgery, Department of Surgery, University of Verona, Piazzale Aristide Stefani, 1, Verona, 37126, Italy
| |
Collapse
|
15
|
Bouzas-Cruz N, Koshy A, Gonzalez-Fernandez O, Ferrera C, Green T, Okwose NC, Woods A, Tovey S, Robinson-Smith N, Mcdiarmid AK, Parry G, Gonzalez-Juanatey JR, Schueler S, Jakovljevic DG, Macgowan G. Markers of Right Ventricular Dysfunction Predict Maximal Exercise Capacity After Left Ventricular Assist Device Implantation. ASAIO J 2021; 67:284-289. [PMID: 33627602 DOI: 10.1097/mat.0000000000001245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although left ventricular assist device (LVAD) improves functional capacity, on average LVAD patients are unable to achieve the aerobic capacity of normal healthy subjects or mild heart failure patients. The aim of this study was to examine if markers of right ventricular (RV) function influence maximal exercise capacity. This was a single-center prospective study that enrolled 20 consecutive HeartWare ventricular assist device patients who were admitted at the Freeman Hospital (Newcastle upon Tyne, United Kingdom) for a heart transplant assessment from August 2017 to October 2018. Mean peak oxygen consumption (Peak VO2) was 14.0 ± 5.0 ml/kg/min, and mean peak age and gender-adjusted percent predicted oxygen consumption (%VO2) was 40.0% ± 11.5%. Patients were subdivided into two groups based on the median peak VO2, so each group consisted of 10 patients (50%). Right-sided and pulmonary pressures were consistently higher in the group with poorer exercise tolerance. Patients with poor exercise tolerance (peak VO2 below the median) had higher right atrial pressures at rest (10.6 ± 6.4 vs. 4.3 mmHg ± 3.2; p = 0.02) and the increase with passive leg raising was significantly greater than those with preserved exercise tolerance (peak VO2 above the median). Patients with poor functional capacity also had greater RV dimensions (4.4 cm ± 0.5 vs. 3.7 cm ± 0.5; p = 0.02) and a higher incidence of significant tricuspid regurgitation (moderate or severe tricuspid regurgitation in five patients in the poor exercise capacity group vs. none in the preserved exercise capacity group; p = 0.03). In conclusion, echocardiographic and hemodynamic markers of RV dysfunction discriminate between preserved and nonpreserved exercise capacity in HeartWare ventricular assist device patients.
Collapse
Affiliation(s)
- Noelia Bouzas-Cruz
- From the Department of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
- Cardiology Department, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Aaron Koshy
- From the Department of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Oscar Gonzalez-Fernandez
- From the Department of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Carlos Ferrera
- From the Department of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Thomas Green
- From the Department of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Nduka C Okwose
- From the Department of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
- Cardiology Department, University of Santiago de Compostela, Santiago de Compostela, Spain
- Newcastle University, Biosciences and Translational and Clinical Research Institutes, Newcastle upon Tyne, United Kingdom
| | - Andrew Woods
- From the Department of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Sian Tovey
- From the Department of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Nicola Robinson-Smith
- From the Department of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Adam K Mcdiarmid
- From the Department of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Gareth Parry
- From the Department of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Jose R Gonzalez-Juanatey
- Newcastle University, Biosciences and Translational and Clinical Research Institutes, Newcastle upon Tyne, United Kingdom
| | - Stephan Schueler
- From the Department of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Djordje G Jakovljevic
- Newcastle University, Biosciences and Translational and Clinical Research Institutes, Newcastle upon Tyne, United Kingdom
| | - Guy Macgowan
- From the Department of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
- Newcastle University, Biosciences and Translational and Clinical Research Institutes, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
16
|
Agostoni P, Emdin M, De Martino F, Apostolo A, Masè M, Contini M, Carriere C, Vignati C, Sinagra G. Roles of periodic breathing and isocapnic buffering period during exercise in heart failure. Eur J Prev Cardiol 2021; 27:19-26. [PMID: 33238742 PMCID: PMC7691624 DOI: 10.1177/2047487320952029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In heart failure, exercise - induced periodic breathing and end tidal carbon dioxide pressure value during the isocapnic buffering period are two features identified at cardiopulmonary exercise testing strictly related to sympathetic activation. In the present review we analysed the physiology behind periodic breathing and the isocapnic buffering period and present the relevant prognostic value of both periodic breathing and the presence/absence of the identifiable isocapnic buffering period.
Collapse
Affiliation(s)
- Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Italy.,Department of Clinical Sciences and Community Health, University of Milano, Italy
| | - Michele Emdin
- Life Science Institute, Scuola Superiore Sant'Anna, Italy.,Fondazione Gabriele Monasterio, CNR-Regione Toscana, Italy
| | | | | | - Marco Masè
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Italy
| | | | - Cosimo Carriere
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Italy
| | - Carlo Vignati
- Centro Cardiologico Monzino, IRCCS, Italy.,Department of Clinical Sciences and Community Health, University of Milano, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Italy
| |
Collapse
|
17
|
Alvarez Villela M, Chinnadurai T, Salkey K, Furlani A, Yanamandala M, Vukelic S, Sims DB, Shin JJ, Saeed O, Jorde UP, Patel SR. Feasibility of high-intensity interval training in patients with left ventricular assist devices: a pilot study. ESC Heart Fail 2020; 8:498-507. [PMID: 33205573 PMCID: PMC7835573 DOI: 10.1002/ehf2.13106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/03/2020] [Accepted: 10/22/2020] [Indexed: 01/27/2023] Open
Abstract
Aims Patients with left ventricular assist device (LVAD) suffer from persistent exercise limitation despite improvement of their heart failure syndrome. Exercise training (ET) programmes to improve aerobic capacity have shown modest efficacy. High‐intensity interval training (HIIT), as an alternative to moderate continuous training, has not been systematically tested in this population. We examine the feasibility of a short, personalized HIIT programme in patients with LVAD and describe its effects on aerobic capacity and left ventricular remodelling. Methods and results Patients on durable LVAD support were prospectively enrolled in a 15‐session, 5 week HIIT programme. Turndown echocardiogram, Kansas City Cardiomyopathy Questionnaire, and cardiopulmonary exercise test were performed before and after HIIT. Training workloads for each subject were based on pretraining peak cardiopulmonary exercise test work rate (W). Percentage of prescribed training workload completed and adverse events were recorded for each subject. Fifteen subjects were enrolled [10 men, age = 51 (29–71) years, HeartMate II = 12, HeartMate 3 = 3, and time on LVAD = 18 (3–64) months]. Twelve completed post‐training testing. HIIT was well tolerated, and 90% (inter‐quartile range: 78, 99%) of the prescribed workload (W) was completed with no major adverse events. Improvements were seen in aV̇O2 at ventilatory threshold [7.1 (6.5, 9.1) to 8.5 (7.7, 9.3) mL/kg/min, P = 0.04], work rate at ventilatory threshold [44 (14, 54) to 55 (21, 66) W, P = 0.05], and left ventricular end‐diastolic volume [168 (144, 216) to 159 (124, 212) mL, n = 7, P = 0.02]. HIIT had no effect on maximal oxygen consumption (V̇O2peak) or Kansas City Cardiomyopathy Questionnaire score. Conclusions Cardiopulmonary exercise test‐guided HIIT is feasible and can improve submaximal aerobic capacity in stable patients with chronic LVAD support. Further studies are needed on its effects on the myocardium and its potential role in cardiac rehabilitation programmes.
Collapse
Affiliation(s)
- Miguel Alvarez Villela
- Department of Medicine, Montefiore Einstein Center for Heart and Vascular Care, New York, NY, USA.,Division of Cardiology, Department of Medicine, Jacobi Medical Center, New York, NY, USA
| | - Thiru Chinnadurai
- Department of Medicine, Montefiore Einstein Center for Heart and Vascular Care, New York, NY, USA
| | - Kalil Salkey
- Department of Medicine, Montefiore Einstein Center for Heart and Vascular Care, New York, NY, USA
| | - Andrea Furlani
- Department of Medicine, Montefiore Einstein Center for Heart and Vascular Care, New York, NY, USA
| | - Mounica Yanamandala
- Brigham and Women's Hospital, Heart and Vascular Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sasha Vukelic
- Department of Medicine, Montefiore Einstein Center for Heart and Vascular Care, New York, NY, USA
| | - Daniel B Sims
- Department of Medicine, Montefiore Einstein Center for Heart and Vascular Care, New York, NY, USA
| | - Jooyoung J Shin
- Department of Medicine, Montefiore Einstein Center for Heart and Vascular Care, New York, NY, USA
| | - Omar Saeed
- Department of Medicine, Montefiore Einstein Center for Heart and Vascular Care, New York, NY, USA
| | - Ulrich P Jorde
- Department of Medicine, Montefiore Einstein Center for Heart and Vascular Care, New York, NY, USA
| | - Snehal R Patel
- Department of Medicine, Montefiore Einstein Center for Heart and Vascular Care, New York, NY, USA
| |
Collapse
|
18
|
Mirza KK, Gustafsson F. Determinants of Functional Capacity and Quality of Life After Implantation of a Durable Left Ventricular Assist Device. Card Fail Rev 2020; 6:e29. [PMID: 33133643 PMCID: PMC7592460 DOI: 10.15420/cfr.2020.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Continuous-flow left ventricular assist devices (LVAD) are increasingly used as destination therapy in patients with end-stage heart failure and, with recent improvements in pump design, adverse event rates are decreasing. Implanted patients experience improved survival, quality of life (QoL) and functional capacity (FC). However, improvement in FC and QoL after implantation is not unequivocal, and this has implications for patient selection and preimplantation discussions with patients and relatives. This article identifies preimplantation predictors of lack of improvement in FC and QoL after continuous-flow LVAD implantation and discusses potential mechanisms, allowing for the identification of potential factors that can be modified. In particular, the pathophysiology behind insufficient improvement in peak oxygen uptake is discussed. Data are included from 40 studies, resulting in analysis of >700 exercise tests. Mean peak oxygen uptake was 13.4 ml/kg/min (equivalent to 48% of predicted value; 259 days after implantation, range 31–1,017 days) and mean 6-minute walk test distance was 370 m (182 days after implantation, range 43–543 days). Finally, the interplay between improvement in FC and QoL is discussed.
Collapse
Affiliation(s)
- Kiran K Mirza
- Department of Cardiology, Rigshospitalet Copenhagen, Denmark
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet Copenhagen, Denmark
| |
Collapse
|
19
|
Okwose NC, Bouzas-Cruz N, Fernandez OG, Koshy A, Green T, Woods A, Robinson-Smith N, Tovey S, Mcdiarmid A, Parry G, Schueler S, Macgowan GA, Jakovljevic DG. Validity of Hemodynamic Monitoring Using Inert Gas Rebreathing Method in Patients With Chronic Heart Failure and Those Implanted With a Left Ventricular Assist Device. J Card Fail 2020; 27:414-418. [PMID: 33035686 DOI: 10.1016/j.cardfail.2020.09.479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/24/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The present study assessed agreement between resting cardiac output estimated by inert gas rebreathing (IGR) and thermodilution methods in patients with heart failure and those implanted with a left ventricular assist device (LVAD). METHODS AND RESULTS Hemodynamic measurements were obtained in 42 patients, 22 with chronic heart failure and 20 with implanted continuous flow LVAD (34 males, aged 50 ± 11 years). Measurements were performed at rest using thermodilution and IGR methods. Cardiac output derived by thermodilution and IGR were not significantly different in LVAD (4.4 ± 0.9 L/min vs 4.7 ± 0.8 L/min, P = .27) or patients with heart failure (4.4 ± 1.4 L/min vs 4.5 ± 1.3 L/min, P = .75). There was a strong relationship between thermodilution and IGR cardiac index (r = 0.81, P = .001) and stroke volume index (r = 0.75, P = .001). Bland-Altman analysis showed acceptable limits of agreement for cardiac index derived by thermodilution and IGR, namely, the mean difference (lower and upper limits of agreement) for patients with heart failure -0.002 L/min/m2 (-0.65 to 0.66 L/min/m2), and -0.14 L/min/m2 (-0.78 to 0.49 L/min/m2) for patients with LVAD. CONCLUSIONS IGR is a valid method for estimating cardiac output and should be used in clinical practice to complement the evaluation and management of chronic heart failure and patients with an LVAD.
Collapse
Affiliation(s)
- Nduka C Okwose
- Cardiovascular Research, Clinical and Translational and Biosciences Research Institutes, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Noelia Bouzas-Cruz
- Departments of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Oscar Gonzalez Fernandez
- Departments of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Aaron Koshy
- Departments of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Thomas Green
- Departments of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrew Woods
- Departments of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nicola Robinson-Smith
- Departments of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sian Tovey
- Departments of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Adam Mcdiarmid
- Departments of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gareth Parry
- Departments of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Stephan Schueler
- Departments of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Guy A Macgowan
- Cardiovascular Research, Clinical and Translational and Biosciences Research Institutes, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Departments of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Djordje G Jakovljevic
- Cardiovascular Research, Clinical and Translational and Biosciences Research Institutes, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Departments of Cardiology and Cardiothoracic Surgery, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Cardiovascular Research Division, Faculty of Health and Life Sciences, Coventry University, Coventry, UK.
| |
Collapse
|
20
|
Kondo T, Okumura T, Oishi H, Arao Y, Kato H, Yamaguchi S, Kuwayama T, Haga T, Yokoi T, Hiraiwa H, Fukaya K, Sawamura A, Morimoto R, Mutsuga M, Fujimoto K, Usui A, Murohara T. Associations between hemodynamic parameters at rest and exercise capacity in patients with implantable left ventricular assist devices. Int J Artif Organs 2020; 44:174-180. [PMID: 32783493 DOI: 10.1177/0391398820949888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hemodynamic parameters at rest are known to correlate poorly with peak oxygen uptake (VO2) in heart failure. However, we hypothesized that hemodynamic parameters at rest could predict exercise capacity in patients with left ventricular assist device (LVAD), because LVAD pump rotational speed does not respond during exercise. Therefore, we investigated the relationships between hemodynamic parameters at rest (measured with right heart catheterization) and exercise capacity (measured with cardiopulmonary exercise testing) in patients with implantable LVAD. METHODS We performed a retrospective medical record review of patients who received implantable LVAD at our institution from November 2013 to December 2017. RESULTS A total of 20 patients were enrolled in this study (15 males; mean age, 45.8 years; median duration of LVAD support, 356 days). The mean peak VO2 and cardiac index (CI) were 13.5 mL/kg/min and 2.6 L/min/m2, respectively. CI and hemoglobin level were significantly associated with peak VO2 (CI: r = 0.632, p = 0.003; hemoglobin: r = 0.520, p = 0.019). In addition, pulmonary capillary wedge pressure, right atrial pressure, and right ventricular stroke work index were also significantly associated with peak VO2. In multiple linear regression analysis, CI and hemoglobin level remained independent predictors of peak VO2 (CI: β = 0.559, p = 0.006; hemoglobin: β = 0.414, p = 0.049). CONCLUSIONS CI at rest and hemoglobin level are associated with poor exercise capacity in patients with LVAD.
Collapse
Affiliation(s)
- Toru Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideo Oishi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihito Arao
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroo Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Yamaguchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tasuku Kuwayama
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoaki Haga
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsuyoshi Yokoi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Hiraiwa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Fukaya
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akinori Sawamura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Morimoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Mutsuga
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuro Fujimoto
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
21
|
Sciomer S, Rellini C, Agostoni P, Moscucci F. A new pathophysiology in heart failure patients. Artif Organs 2020; 44:1303-1305. [PMID: 32639613 DOI: 10.1111/aor.13770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 06/30/2020] [Indexed: 01/28/2023]
Abstract
In the treatment of patients with severe heart failure, left ventricle assist device plays an important role, especially as a destination therapy. Nevertheless, even in successful cases, patients' progressive weaning is rarely taken into consideration. The recovery of more physiological circulation conditions is not a main goal. This hypothesis is discussed in this article.
Collapse
Affiliation(s)
- Susanna Sciomer
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, University of Rome "Sapienza", Policlinico Umberto I, Rome, Italy
| | - Carlotta Rellini
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, University of Rome "Sapienza", Policlinico Umberto I, Rome, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Moscucci
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, University of Rome "Sapienza", Policlinico Umberto I, Rome, Italy
| |
Collapse
|
22
|
Trombara F, Apostolo A, Vignati C, Agostoni P. Why do left ventricular assist device recipients remain heart failure patients? Reply. Eur J Heart Fail 2020; 22:1055. [PMID: 32297429 DOI: 10.1002/ejhf.1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
| | | | - Carlo Vignati
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Loardi C, Zanobini M. Why do left ventricular assist device recipients remain heart failure patients? Letter regarding the article 'Effects of left ventricular assist device on cardiopulmonary exercise performance'. Eur J Heart Fail 2020; 22:1054-1055. [PMID: 32232891 DOI: 10.1002/ejhf.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Claudia Loardi
- Department of Cardiac Surgery, Tours University Hospital, Tours, France
| | - Marco Zanobini
- Department of Cardiac Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
24
|
Lilliu M, Onorati F, Luciani GB, Faggian G. The determinants of functional capacity in left ventricular assist device patients: many actors with not well defined roles. J Cardiovasc Med (Hagerstown) 2020; 21:472-480. [DOI: 10.2459/jcm.0000000000000958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Left Ventricular Filling Pressures Contribute to Exercise Limitation in Patients with Continuous Flow Left Ventricular Assist Devices. ASAIO J 2020; 66:247-252. [DOI: 10.1097/mat.0000000000001073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Guihaire J, Haddad F, Hoppenfeld M, Amsallem M, Christle JW, Owyang C, Shaikh K, Hsu JL. Physiology of the Assisted Circulation in Cardiogenic Shock: A State-of-the-Art Perspective. Can J Cardiol 2020; 36:170-183. [PMID: 32036862 PMCID: PMC7121859 DOI: 10.1016/j.cjca.2019.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 01/18/2023] Open
Abstract
Mechanical circulatory support (MCS) has made rapid progress over the last 3 decades. This was driven by the need to develop acute and chronic circulatory support as well as by the limited organ availability for heart transplantation. The growth of MCS was also driven by the use of extracorporeal membrane oxygenation (ECMO) after the worldwide H1N1 influenza outbreak of 2009. The majority of mechanical pumps (ECMO and left ventricular assist devices) are currently based on continuous flow pump design. It is interesting to note that in the current era, we have reverted from the mammalian pulsatile heart back to the continuous flow pumps seen in our simple multicellular ancestors. This review will highlight key physiological concepts of the assisted circulation from its effects on cardiac dynamic to principles of cardiopulmonary fitness. We will also examine the physiological principles of the ECMO-assisted circulation, anticoagulation, and the haemocompatibility challenges that arise when the blood is exposed to a foreign mechanical circuit. Finally, we conclude with a perspective on smart design for future development of devices used for MCS.
Collapse
Affiliation(s)
- Julien Guihaire
- Department of Cardiac Surgery, Research and Innovation Unit, RHU BioArt Lung 2020, Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France.
| | - Francois Haddad
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, USA
| | - Mita Hoppenfeld
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Myriam Amsallem
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, USA
| | - Jeffrey W Christle
- Department of Medicine, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Clark Owyang
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Khizer Shaikh
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Joe L Hsu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
27
|
Van Iterson EH. Left Ventricular Assist Device Support Complicates the Exercise Physiology of Oxygen Transport and Uptake in Heart Failure. Card Fail Rev 2019; 5:162-168. [PMID: 31768273 PMCID: PMC6848979 DOI: 10.15420/cfr.2019.10.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/15/2019] [Indexed: 11/05/2022] Open
Abstract
Low-output forward flow and impaired maximal exercise oxygen uptake (VO2 max) are hallmarks of patients in advanced heart failure. The continuous-flow left ventricular assist device is a cutting-edge therapy proven to increase forward flow, yet this therapy does not yield consistent improvements in VO2 max. The science of how adjustable artificial forward flow impacts the exercise physiology of heart failure and physical O2 transport between the central and peripheral systems is unclear. This review focuses on the exercise physiology of axial continuous-flow left ventricular assist device support and the impact that pump speed has on the interactive convective and diffusive components of whole-body physical O2 transport and VO2.
Collapse
Affiliation(s)
- Erik H Van Iterson
- Section of Preventive Cardiology and Rehabilitation, Heart and Vascular Institute, Cleveland Clinic, Cleveland OH, US
| |
Collapse
|
28
|
Gross C, Moscato F, Schlöglhofer T, Maw M, Meyns B, Marko C, Wiedemann D, Zimpfer D, Schima H, Fresiello L. LVAD speed increase during exercise, which patients would benefit the most? A simulation study. Artif Organs 2019; 44:239-247. [DOI: 10.1111/aor.13569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/03/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Christoph Gross
- Center for Medical Physics and Biomedical Engineering Medical University of Vienna Vienna Austria
- Ludwig‐Boltzmann‐Cluster for Cardiovascular Research Vienna Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering Medical University of Vienna Vienna Austria
- Ludwig‐Boltzmann‐Cluster for Cardiovascular Research Vienna Austria
| | - Thomas Schlöglhofer
- Center for Medical Physics and Biomedical Engineering Medical University of Vienna Vienna Austria
- Ludwig‐Boltzmann‐Cluster for Cardiovascular Research Vienna Austria
- Department of Cardiac Surgery Medical University of Vienna Vienna Austria
| | - Martin Maw
- Center for Medical Physics and Biomedical Engineering Medical University of Vienna Vienna Austria
- Ludwig‐Boltzmann‐Cluster for Cardiovascular Research Vienna Austria
- Department of Cardiac Surgery Medical University of Vienna Vienna Austria
| | - Bart Meyns
- Department of Cardiac Surgery Katholieke Universiteit Leuven Leuven Belgium
| | | | - Dominik Wiedemann
- Department of Cardiac Surgery Medical University of Vienna Vienna Austria
| | - Daniel Zimpfer
- Ludwig‐Boltzmann‐Cluster for Cardiovascular Research Vienna Austria
- Department of Cardiac Surgery Medical University of Vienna Vienna Austria
| | - Heinrich Schima
- Center for Medical Physics and Biomedical Engineering Medical University of Vienna Vienna Austria
- Ludwig‐Boltzmann‐Cluster for Cardiovascular Research Vienna Austria
- Department of Cardiac Surgery Medical University of Vienna Vienna Austria
| | - Libera Fresiello
- Department of Cardiac Surgery Katholieke Universiteit Leuven Leuven Belgium
- Institute of Clinical Physiology National Research Council Pisa Italy
| |
Collapse
|
29
|
Murata M, Adachi H, Nakade T, Miyaishi Y, Kan H, Okonogi S, Kuribara J, Yamashita E, Kawaguchi R, Ezure M. Ventilatory Efficacy After Transcatheter Aortic Valve Replacement Predicts Mortality and Heart Failure Events in Elderly Patients. Circ J 2019; 83:2034-2043. [PMID: 31462606 DOI: 10.1253/circj.cj-19-0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND We aimed to clarify the predictors of death or heart failure (HF) in elderly patients who undergo transcatheter aortic valve replacement (TAVR). METHODS AND RESULTS We prospectively enrolled 83 patients (age, 83±5 years) who underwent transthoracic echocardiography (TTE) and cardiopulmonary exercise testing (CPET) with impedance cardiography post-TAVR. We investigated the association of TTE and CPET parameters with death and the combined outcome of death and HF hospitalization. Over a follow-up of 19±9 months, peak oxygen uptake (V̇O2) was not associated with death or the combined outcome. The minimum ratio of minute ventilation (V̇E) to carbon dioxide production (V̇CO2) and the V̇E vs. V̇CO2slope were higher in patients with the combined outcome. After adjusting for age, sex, Society of Thoracic Surgeons score and peak V̇O2, ventilatory efficacy parameters remained independent predictors of the combined outcome (minimum V̇E/V̇O2: hazard ratio, 1.108; 95% confidence interval, 1.010-1.215; P=0.031; V̇E vs. V̇CO2slope: hazard ratio, 1.035; 95% confidence interval, 1.001-1.071; P=0.044), and had a greater area under the receiver-operating characteristic curve. The V̇E vs. V̇CO2slope ≥34.6 was associated with higher rates of the combined outcome, as well as lower cardiac output at peak work rate during CPET. CONCLUSIONS In elderly patients, lower ventilatory efficacy post-TAVR is a predictor of death and HF hospitalization, reflecting lower cardiac output at peak exercise.
Collapse
Affiliation(s)
- Makoto Murata
- Department of Cardiology, Gunma Prefectural Cardiovascular Center
| | - Hitoshi Adachi
- Department of Cardiology, Gunma Prefectural Cardiovascular Center
| | - Taisuke Nakade
- Department of Cardiology, Gunma Prefectural Cardiovascular Center
| | - Yusuke Miyaishi
- Department of Cardiology, Gunma Prefectural Cardiovascular Center
| | - Hakuken Kan
- Department of Cardiology, Gunma Prefectural Cardiovascular Center
- Department of Cardiology, Shisei Clinic
| | - Shuichi Okonogi
- Department of Cardiovascular Surgery, Gunma Prefectural Cardiovascular Center
| | - Jun Kuribara
- Department of Cardiology, Gunma Prefectural Cardiovascular Center
| | - Eiji Yamashita
- Department of Cardiology, Gunma Prefectural Cardiovascular Center
| | - Ren Kawaguchi
- Department of Cardiology, Gunma Prefectural Cardiovascular Center
| | - Masahiko Ezure
- Department of Cardiovascular Surgery, Gunma Prefectural Cardiovascular Center
| |
Collapse
|
30
|
Severin R, Sabbahi A, Ozemek C, Phillips S, Arena R. Approaches to improving exercise capacity in patients with left ventricular assist devices: an area requiring further investigation. Expert Rev Med Devices 2019; 16:787-798. [PMID: 31453716 DOI: 10.1080/17434440.2019.1660643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Introduction: Left ventricular assist device (LVAD) implantation has become a well-established treatment option for patients with end stage heart failure (HF) who are refractory to medical therapy. While LVADs implantation does effectively improve hemodynamic performance many patients still possess peripheral pathological adaptations often present in end-stage HF. Therefore, increased attention has been placed on investigating the effects of exercise training for patients with LVADs to improve clinical outcomes. However, the available evidence on exercise training for patients with LVADs is limited. Areas covered: The purpose of this narrative review is to summarize: 1) The evolution of LVAD technology and usage; 2) The physiological responses to exercise in patients with LVADs; 3) The available evidence regarding exercise training; 4) Potential strategies to implement exercise training programs for this patient population. Expert opinion: The available evidence for exercise training to improve physical function and clinical outcomes for patients with LVADs is promising but limited. Future research is needed to further elucidate the ideal exercise training parameters, method of delivery for exercise training, and unique barriers and facilitators to exercise training for patients receiving LVAD implantation.
Collapse
Affiliation(s)
- Richard Severin
- Department of Physical Therapy, University of Illinois , Chicago , IL , USA
| | - Ahmad Sabbahi
- Department of Physical Therapy, University of Illinois , Chicago , IL , USA
| | - Cemal Ozemek
- Department of Physical Therapy, University of Illinois , Chicago , IL , USA
| | - Shane Phillips
- Department of Physical Therapy, University of Illinois , Chicago , IL , USA
| | - Ross Arena
- Department of Physical Therapy, University of Illinois , Chicago , IL , USA
| |
Collapse
|
31
|
Laoutaris ID. Restoring pulsatility and peakVO 2 in the era of continuous flow, fixed pump speed, left ventricular assist devices: 'A hypothesis of pump's or patient's speed?'. Eur J Prev Cardiol 2019; 26:1806-1815. [PMID: 31180758 DOI: 10.1177/2047487319856448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite significant improvement in survival and functional capacity after continuous flow left ventricular assist device implantation, the patient's quality of life may remain limited by complications such as aortic valve insufficiency, thromboembolic episodes and gastrointestinal bleeding attributed to high shear stress continuous flow with attenuated or absence of pulsatile flow and by a reduced peak oxygen consumption (peakVO2) primarily associated with a fixed pump speed operation. Revision of current evidence suggests that high technology pump speed algorithms, a 'hypothesis of decreasing pump's speed' to promote pulsatile flow and a 'hypothesis of increasing pump's speed' to increase peakVO2, may only partially reverse these barriers. A 'hypothesis of increasing patient's speed' is introduced, suggesting that exercise training may further contribute to the patient's recovery, enhancing peakVO2 and pulsatile flow by improving skeletal muscle oxidative capacity and strength, peripheral vasodilatory and ventilatory responses, favour changes in preload/afterload and facilitate native flow, formulating the rationale for further studies in the field.
Collapse
|
32
|
Vignati C, Morosin M, Fusini L, Pezzuto B, Spadafora E, De Martino F, Salvioni E, Rovai S, Filardi PP, Sinagra G, Agostoni P. Do rebreathing manoeuvres for non-invasive measurement of cardiac output during maximum exercise test alter the main cardiopulmonary parameters? Eur J Prev Cardiol 2019; 26:1616-1622. [DOI: 10.1177/2047487319845967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Inert gas rebreathing has been recently described as an emergent reliable non-invasive method for cardiac output determination during exercise, allowing a relevant improvement of cardiopulmonary exercise test clinical relevance. For cardiac output measurements by inert gas rebreathing, specific respiratory manoeuvres are needed which might affect pivotal cardiopulmonary exercise test parameters, such as exercise tolerance, oxygen uptake and ventilation vs carbon dioxide output (VE/VCO2) relationship slope. Method We retrospectively analysed cardiopulmonary exercise testing of 181 heart failure patients who underwent both cardiopulmonary exercise testing and cardiopulmonary exercise test+cardiac output within two months (average 16 ± 15 days). All patients were in stable clinical conditions (New York Heart Association I–III) and on optimal medical therapy. Results The majority of patients were in New York Heart Association Class I and II (78.8%), with a mean left ventricular ejection fraction of 31 ± 10%. No difference was found between the two tests in oxygen uptake at peak exercise (1101 (interquartile range 870–1418) ml/min at cardiopulmonary exercise test vs 1103 (844–1389) at cardiopulmonary exercise test-cardiac output) and at anaerobic threshold. However, anaerobic threshold and peak heart rate, peak workload (75 (58–101) watts and 64 (42–90), p < 0.01) and carbon dioxide output were significantly higher at cardiopulmonary exercise testing than at cardiopulmonary exercise test+cardiac output, whereas VE/VCO2 slope was higher at cardiopulmonary exercise test+cardiac output (30 (27–35) vs 33 (28–37), p < 0.01). Conclusion The similar anaerobic threshold and peak oxygen uptake in the two tests with a lower peak workload and higher VE/VCO2 slope at cardiopulmonary exercise test+cardiac output suggest a higher respiratory work and consequent demand for respiratory muscle blood flow secondary to the ventilatory manoeuvres. Accordingly, VE/VCO2 slope and peak workload must be evaluated with caution during cardiopulmonary exercise test+cardiac output.
Collapse
Affiliation(s)
- Carlo Vignati
- Centro Cardiologico Monzino, IRCCS, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Italy
| | - Marco Morosin
- Centro Cardiologico Monzino, IRCCS, Italy
- Cardiovascular Department, Azienda Sanitaria-Universitaria Integrata of Trieste, Italy
| | | | | | | | | | | | - Sara Rovai
- Centro Cardiologico Monzino, IRCCS, Italy
- Università degli Studi di Padova, Italy
| | - Pasquale P Filardi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria-Universitaria Integrata of Trieste, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Italy
| |
Collapse
|
33
|
Uriel N, Burkhoff D, Rich JD, Drakos SG, Teuteberg JJ, Imamura T, Rodgers D, Raikhelkar J, Vorovich EE, Selzman CH, Kim G, Sayer G. Impact of Hemodynamic Ramp Test-Guided HVAD Speed and Medication Adjustments on Clinical Outcomes. Circ Heart Fail 2019; 12:e006067. [DOI: 10.1161/circheartfailure.119.006067] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nir Uriel
- Division of Cardiology, University of Chicago, IL (N.U., T.I., D.R., J.R., G.K., G.S.)
| | - Daniel Burkhoff
- Cardiovascular Research Foundation and Division of Cardiology, Columbia University, New York, NY (D.B.)
| | - Jonathan D. Rich
- Division of Cardiology, Northwestern University, IL (J.D.R., E.E.V.)
| | - Stavros G. Drakos
- Divisions of Cardiology and Surgery, University of Utah, Salt Lake City (S.G.D., C.H.S.)
| | | | - Teruhiko Imamura
- Division of Cardiology, University of Chicago, IL (N.U., T.I., D.R., J.R., G.K., G.S.)
| | - Daniel Rodgers
- Division of Cardiology, University of Chicago, IL (N.U., T.I., D.R., J.R., G.K., G.S.)
| | - Jayant Raikhelkar
- Division of Cardiology, University of Chicago, IL (N.U., T.I., D.R., J.R., G.K., G.S.)
| | | | - Craig H. Selzman
- Divisions of Cardiology and Surgery, University of Utah, Salt Lake City (S.G.D., C.H.S.)
| | - Gene Kim
- Division of Cardiology, University of Chicago, IL (N.U., T.I., D.R., J.R., G.K., G.S.)
| | - Gabriel Sayer
- Division of Cardiology, University of Chicago, IL (N.U., T.I., D.R., J.R., G.K., G.S.)
| |
Collapse
|
34
|
Adamopoulos S, Corrà U, Laoutaris ID, Pistono M, Agostoni PG, Coats AJ, Crespo Leiro MG, Cornelis J, Davos CH, Filippatos G, Lund LH, Jaarsma T, Ruschitzka F, Seferovic PM, Schmid JP, Volterrani M, Piepoli MF. Exercise training in patients with ventricular assist devices: a review of the evidence and practical advice. A position paper from the Committee on Exercise Physiology and Training and the Committee of Advanced Heart Failure of the Heart Failure Associat. Eur J Heart Fail 2018; 21:3-13. [DOI: 10.1002/ejhf.1352] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/06/2018] [Accepted: 08/26/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Stamatis Adamopoulos
- Heart Failure and Heart Transplantation Unit; Onassis Cardiac Surgery Center; Athens Greece
| | - Ugo Corrà
- Cardiology Department; Istituti Clinici Scientifici Maugeri, Centro Medico di Riabilitazione di Veruno; Novara Italy
| | - Ioannis D. Laoutaris
- Heart Failure and Heart Transplantation Unit; Onassis Cardiac Surgery Center; Athens Greece
| | - Massimo Pistono
- Cardiology Department; Istituti Clinici Scientifici Maugeri, Centro Medico di Riabilitazione di Veruno; Novara Italy
| | - Pier Giuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health; Cardiovascular Section, University of Milan; Milan Italy
| | | | - Maria G. Crespo Leiro
- Heart Failure and Transplant Unit; Complexo Hospitalario Universitario A Coruña (CHUAC), INIBIC, CIBERCV, UDC; La Coruña Spain
| | - Justien Cornelis
- Faculty of Medicine and Health Sciences, Translational Pathophysiological Research; University of Antwerp; Antwerp Belgium
| | - Constantinos H. Davos
- Cardiovascular Research Laboratory; Biomedical Research Foundation, Academy of Athens; Athens Greece
| | | | - Lars H. Lund
- Department of Medicine; Karolinska Institutet and Heart and Vascular Theme, Karolinska University Hospital; Stockholm Sweden
| | - Tiny Jaarsma
- Department of Nursing; University of Linköping; Linköping Sweden
| | - Frank Ruschitzka
- Department of Cardiology; University Heart Center; Zürich Switzerland
| | | | - Jean-Paul Schmid
- Chefarzt Kardiologie, Klinik Barmelweid AG; Barmelweid Switzerland
| | | | - Massimo F. Piepoli
- Heart Failure Unit, Cardiac Department; Guglielmo da Saliceto Hospital; Piacenza Italy
| |
Collapse
|
35
|
Apostolo A, Paolillo S, Contini M, Vignati C, Tarzia V, Campodonico J, Mapelli M, Massetti M, Bejko J, Righini F, Bottio T, Bonini N, Salvioni E, Gugliandolo P, Parati G, Lombardi C, Gerosa G, Salvi L, Alamanni F, Agostoni P. Comprehensive effects of left ventricular assist device speed changes on alveolar gas exchange, sleep ventilatory pattern, and exercise performance. J Heart Lung Transplant 2018; 37:1361-1371. [DOI: 10.1016/j.healun.2018.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/27/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022] Open
|
36
|
Schmidt T, Bjarnason-Wehrens B, Schulte-Eistrup S, Reiss N. Effects of pump speed changes on exercise capacity in patients supported with a left ventricular assist device-an overview. J Thorac Dis 2018; 10:S1802-S1810. [PMID: 30034856 DOI: 10.21037/jtd.2018.01.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The implantation of left ventricular assist devices (LVAD) has been established as a successful treatment for terminal heart failure (HF) for many years. Patient benefits include significantly improved survival, as well as improved quality of life. However, peak exercise capacity following LVAD implantation remains considerably restricted. This could be due to the predominate use of continuous-flow pumps, which operate at a fixed rotational speed and do not adapt to exercise conditions. Therefore, current research is focused on whether, and to what extent, adaptations in pump speed can influence and improve patient exercise capacity. We performed a systematic PubMed literature search on this topic, and found 11 relevant studies with 161 patients. Exercise time, peak work load, total cardiac output (TCO), peak oxygen consumption (peak VO2) and, if available, values at the anaerobic threshold (AT) were all taken into consideration. Possible complications were documented. This paper aims to compare the results from these studies in order to discuss the effects of pump speed adaptations on exercise capacity.
Collapse
Affiliation(s)
- Thomas Schmidt
- Schüchtermann-Klinik Bad Rothenfelde, Bad Rothenfelde, Germany.,Institute for Cardiology and Sports Medicine, German Sports University Cologne, Cologne, Germany
| | - Birna Bjarnason-Wehrens
- Institute for Cardiology and Sports Medicine, German Sports University Cologne, Cologne, Germany
| | | | - Nils Reiss
- Schüchtermann-Klinik Bad Rothenfelde, Bad Rothenfelde, Germany
| |
Collapse
|
37
|
Schmidt T, Bjarnason-Wehrens B, Mommertz S, Hannig M, Schulte-Eistrup S, Willemsen D, Reiss N. Changes in Total Cardiac Output and Oxygen Extraction During Exercise in Patients Supported With an HVAD Left Ventricular Assist Device. Artif Organs 2018; 42:686-694. [DOI: 10.1111/aor.13102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/03/2017] [Accepted: 11/28/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas Schmidt
- Schüchtermann-Klinik Bad Rothenfelde, Bad Rothenfelde; Cologne Germany
- Department for Preventive and Rehabilitative Sport and Exercise Medicine; Institute for Cardiology and Sports Medicine, German Sports University Cologne; Cologne Germany
| | - Birna Bjarnason-Wehrens
- Department for Preventive and Rehabilitative Sport and Exercise Medicine; Institute for Cardiology and Sports Medicine, German Sports University Cologne; Cologne Germany
| | | | - Meike Hannig
- Schüchtermann-Klinik Bad Rothenfelde, Bad Rothenfelde; Cologne Germany
| | | | - Detlev Willemsen
- Schüchtermann-Klinik Bad Rothenfelde, Bad Rothenfelde; Cologne Germany
| | - Nils Reiss
- Schüchtermann-Klinik Bad Rothenfelde, Bad Rothenfelde; Cologne Germany
| |
Collapse
|
38
|
Reiss N, Schmidt T, Mommertz S, Feldmann C, Schmitto JD. Inert gas rebreathing - helpful tool in the management of left ventricular assist device patients. Perfusion 2018; 33:335-338. [DOI: 10.1177/0267659117751621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In patients with left ventricular assist devices (LVAD), exercise capacity is a decisive factor regarding the quality of life. When evaluating exercise capacity, precise information about the total cardiac output generated is crucial. To date, complex measurements using a right-heart catheter were necessary in order to determine total cardiac output. The inert gas rebreathing method facilitates non-invasive, direct and valid measurement of total cardiac output as well as associated parameters, like the difference in arteriovenous oxygen saturation, both at rest and during exercise. It is the aim of this paper to focus on this conclusive method which is, despite its simplicity and low-risk reproducibility, rarely used within the framework of LVAD patient treatment at the present time. The test protocol used at our hospital is presented to facilitate the implementation of this helpful tool in other interested institutions.
Collapse
Affiliation(s)
- Nils Reiss
- Department for Clinical Research, Schüchtermann-Klinik Bad Rothenfelde, Bad Rothenfelde, Germany
| | - Thomas Schmidt
- Department for Clinical Research, Schüchtermann-Klinik Bad Rothenfelde, Bad Rothenfelde, Germany
| | - Stephanie Mommertz
- Department for Clinical Research, Schüchtermann-Klinik Bad Rothenfelde, Bad Rothenfelde, Germany
| | - Christina Feldmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jan Dieter Schmitto
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
39
|
|