1
|
Zawadka-Kunikowska M, Rzepiński Ł, Cieślicka M, Fanslau J, Klawe JJ, Tafil-Klawe M. Correlation between Cardiovascular Autonomic and Pulmonary Ventilation Functions in Myasthenia Gravis Patients. Adv Respir Med 2023; 91:546-559. [PMID: 38131875 PMCID: PMC10740449 DOI: 10.3390/arm91060040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
This study aimed to investigate the relationship between pulmonary function and cardiac autonomic function parameters in clinically stable myasthenia gravis (MG) patients. A total of 22 MG patients and 22 healthy controls (HCs) were evaluated. Pulmonary function test parameters, heart rate variability (HRV), baroreflex sensitivity (BRS), and cardiovascular autonomic function test parameters (the Valsalva ratio, expiration/inspiration (E/I) ratio) were assessed. Compared with the HCs, the patients demonstrated a similar diffusion capacity for carbon monoxide (DLCO); a lower forced vital capacity (FVC%pred); a lower forced expiratory volume in 1 s (FEV1%pred); lower BRS and HRV, including high-frequency and total power spectral density; and a higher percentage of abnormal cardiovagal function test results (p < 0.05). A lower BRS in the patient group was associated with worse clinical disease outcomes and reduced pulmonary function (DLCO%pred, R = 0.59; TLC%pred, R = 0.48). Age, forced vital capacity, and total lung capacity predicted the E/I ratio (R2 values ranging from 0.48 to 0.49). Our study demonstrated a significant relationship between a reduced pulmonary ventilation function and respiratory mechanics with cardiovascular autonomic parameters, including the E/I ratio, BRS, and HRV measures at rest, as shown in the MG group. Future studies should focus on the interplay between respiratory and autonomic function testing, as well as pulmonary rehabilitation, to mitigate cardiovascular risk in these patients.
Collapse
Affiliation(s)
- Monika Zawadka-Kunikowska
- Department of Human Physiology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.C.); (J.F.); (M.T.-K.)
| | - Łukasz Rzepiński
- Sanitas—Neurology Outpatient Clinic, Dworcowa 110, 85-010 Bydgoszcz, Poland;
- Department of Neurology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Mirosława Cieślicka
- Department of Human Physiology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.C.); (J.F.); (M.T.-K.)
| | - Joanna Fanslau
- Department of Human Physiology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.C.); (J.F.); (M.T.-K.)
| | - Jacek J. Klawe
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland;
| | - Małgorzata Tafil-Klawe
- Department of Human Physiology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Karłowicza 24, 85-092 Bydgoszcz, Poland; (M.C.); (J.F.); (M.T.-K.)
| |
Collapse
|
2
|
Laursen JC, Hansen CS, Bordino M, Frimodt-Møller M, Hansen TW, Bernardi L, Groop PH, Rossing P. The association between blood oxygen saturation and baroreflex sensitivity in adults with type 1 diabetes with and without albuminuria. J Diabetes Complications 2023; 37:108473. [PMID: 37121117 DOI: 10.1016/j.jdiacomp.2023.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Low baroreflex sensitivity is an indicator of early cardiovascular autonomic neuropathy. We explored the association between baroreflex sensivity and blood oxygen saturation (SpO2) in type 1 diabetes and various degrees of microvascular disease. METHODS In this Danish-Finnish cross-sectional multicentre study, baroreflex sensivity and SpO2 (pulse oximetry) were examined in persons with type 1 diabetes and normoalbuminuria (n = 98), microalbuminuria (n = 28), or macroalbuminuria (n = 43), and in non-diabetic controls (n = 54). Associations and differences between groups were analysed using regression models and adjustment included age, sex, smoking, HbA1c, blood haemoglobin, urine albumin creatinine ratio, body mass index, and estimated glomerular filtration rate. RESULTS In type 1 diabetes, higher baroreflex sensitivity was associated with higher SpO2 before adjustment (% increase per one % increase in SpO2 = 20 % (95%CI: 11-30); p < 0.001) and the association remained significant after adjustment (p = 0.02). Baroreflex sensitivity was not different between non-diabetic controls and persons with type 1 diabetes and normoalbuminuria (p = 0.052). Compared with type 1 diabetes and normoalbuminuria, baroreflex sensitivity was lower in micro- (p < 0.001) and macroalbuminuria (p < 0.001). SpO2 was lower in persons with type 1 diabetes and normoalbuminuria compared with non-diabetic controls (p < 0.01). Within the participants with type 1 diabetes, SpO2 was not different in micro- or macroalbuminuria compared with normoalbuminuria (p-values > 0.05), but lower in macro-compared with microalbuminuria (p < 0.01). CONCLUSIONS Lower baroreflex sensitivity was associated with lower SpO2 in type 1 diabetes. The present study support the hypothesis that hypoxia could be a therapeutic target in persons with type 1 diabetes.
Collapse
Affiliation(s)
| | | | - Marco Bordino
- Folkhälsen Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | - Luciano Bernardi
- Folkhälsen Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsen Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland; Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Laursen JC, Jepsen R, Bruun-Rasmussen NE, Frimodt-Møller M, Jørgensen ME, Rossing P, Hansen CS. Blood oxygen saturation is lower in persons with pre-diabetes and screen-detected diabetes compared with non-diabetic individuals: A population-based study of the Lolland-Falster Health Study cohort. FRONTIERS IN EPIDEMIOLOGY 2022; 2:1022342. [PMID: 38455289 PMCID: PMC10910962 DOI: 10.3389/fepid.2022.1022342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 03/09/2024]
Abstract
Aims Low blood oxygen saturation is associated with increased mortality and persons with diabetes have sub-clinical hypoxemia. We aimed to confirm the presence of sub-clinical hypoxemia in pre-diabetes, screen-detected diabetes and known diabetes. Methods Pre-diabetes was defined as hemoglobin A1C (HbA1C) ≥ 42 mmol/mol and <48 mmol/mol; known diabetes as history or treatment of diabetes; screen-detected diabetes as no history or treatment of diabetes and HbA1C ≥ 48 mmol/mol. Blood oxygen saturation was measured with pulse oximetry. Urine albumin-to creatinine ratio (UACR) was measured on a single spot urine. Results The study included 829 adults (≥18 years) with diabetes (713 (86%) with known diabetes; 116 (14%) with screen-detected diabetes) and 12,747 without diabetes (11,981 (94%) healthy controls; 766 (6%) with pre-diabetes). Mean (95% CI) blood oxygen saturation was 96.3% (96.3% to 96.4%) in diabetes which was lower than in non-diabetes [97.3% (97.2-97.3%)] after adjustment for age, gender, and smoking (p < 0.001), but significance was lost after adjustment for BMI (p = 0.25). Sub-groups with pre-diabetes and screen-detected diabetes had lower blood oxygen saturations than healthy controls (p-values < 0.01). Lower blood oxygen saturation was associated with higher UACR. Conclusions Persons with pre-diabetes and screen-detected diabetes have sub-clinical hypoxemia, which is associated with albuminuria.
Collapse
Affiliation(s)
| | - Randi Jepsen
- Center for Epidemiological Research, Nykøbing Falster Hospital, Nykøbing Falster, Denmark
| | | | | | | | - Peter Rossing
- Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
4
|
Daskalaki E, Parkinson A, Brew-Sam N, Hossain MZ, O'Neal D, Nolan CJ, Suominen H. The Potential of Current Noninvasive Wearable Technology for the Monitoring of Physiological Signals in the Management of Type 1 Diabetes: Literature Survey. J Med Internet Res 2022; 24:e28901. [PMID: 35394448 PMCID: PMC9034434 DOI: 10.2196/28901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background Monitoring glucose and other parameters in persons with type 1 diabetes (T1D) can enhance acute glycemic management and the diagnosis of long-term complications of the disease. For most persons living with T1D, the determination of insulin delivery is based on a single measured parameter—glucose. To date, wearable sensors exist that enable the seamless, noninvasive, and low-cost monitoring of multiple physiological parameters. Objective The objective of this literature survey is to explore whether some of the physiological parameters that can be monitored with noninvasive, wearable sensors may be used to enhance T1D management. Methods A list of physiological parameters, which can be monitored by using wearable sensors available in 2020, was compiled by a thorough review of the devices available in the market. A literature survey was performed using search terms related to T1D combined with the identified physiological parameters. The selected publications were restricted to human studies, which had at least their abstracts available. The PubMed and Scopus databases were interrogated. In total, 77 articles were retained and analyzed based on the following two axes: the reported relations between these parameters and T1D, which were found by comparing persons with T1D and healthy control participants, and the potential areas for T1D enhancement via the further analysis of the found relationships in studies working within T1D cohorts. Results On the basis of our search methodology, 626 articles were returned, and after applying our exclusion criteria, 77 (12.3%) articles were retained. Physiological parameters with potential for monitoring by using noninvasive wearable devices in persons with T1D included those related to cardiac autonomic function, cardiorespiratory control balance and fitness, sudomotor function, and skin temperature. Cardiac autonomic function measures, particularly the indices of heart rate and heart rate variability, have been shown to be valuable in diagnosing and monitoring cardiac autonomic neuropathy and, potentially, predicting and detecting hypoglycemia. All identified physiological parameters were shown to be associated with some aspects of diabetes complications, such as retinopathy, neuropathy, and nephropathy, as well as macrovascular disease, with capacity for early risk prediction. However, although they can be monitored by available wearable sensors, most studies have yet to adopt them, as opposed to using more conventional devices. Conclusions Wearable sensors have the potential to augment T1D sensing with additional, informative biomarkers, which can be monitored noninvasively, seamlessly, and continuously. However, significant challenges associated with measurement accuracy, removal of noise and motion artifacts, and smart decision-making exist. Consequently, research should focus on harvesting the information hidden in the complex data generated by wearable sensors and on developing models and smart decision strategies to optimize the incorporation of these novel inputs into T1D interventions.
Collapse
Affiliation(s)
- Elena Daskalaki
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| | - Anne Parkinson
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Nicola Brew-Sam
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Md Zakir Hossain
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia.,School of Biology, College of Science, The Australian National University, Canberra, Australia.,Bioprediction Activity, Commonwealth Industrial and Scientific Research Organisation, Canberra, Australia
| | - David O'Neal
- Department of Medicine, University of Melbourne, Melbourne, Australia.,Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Australia
| | - Christopher J Nolan
- Australian National University Medical School and John Curtin School of Medical Research, College of Health and Medicine, The Autralian National University, Canberra, Australia.,Department of Diabetes and Endocrinology, The Canberra Hospital, Canberra, Australia
| | - Hanna Suominen
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia.,Data61, Commonwealth Industrial and Scientific Research Organisation, Canberra, Australia.,Department of Computing, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Laursen JC, Clemmensen KKB, Hansen CS, Diaz LJ, Bordino M, Groop PH, Frimodt-Moller M, Bernardi L, Rossing P. Persons with type 1 diabetes have low blood oxygen levels in the supine and standing body positions. BMJ Open Diabetes Res Care 2021; 9:9/1/e001944. [PMID: 34059524 PMCID: PMC8169468 DOI: 10.1136/bmjdrc-2020-001944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/09/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Blood oxygen saturation is low compared with healthy controls (CONs) in the supine body position in individuals with type 1 diabetes (T1D) and has been associated with complications. Since most of daily life occurs in the upright position, it is of interest if this also applies in the standing body position. In addition, tissue oxygenation in other anatomical sites could show different patterns in T1D. Therefore, we investigated blood, arm and forehead oxygen levels in the supine and standing body positions in individuals with T1D (n=129) and CONs (n=55). RESEARCH DESIGN AND METHODS Blood oxygen saturation was measured with pulse oximetry. Arm and forehead mixed tissue oxygen levels were measured with near-infrared spectroscopy sensors applied on the skin. RESULTS Data are presented as least squares means±SEM and differences (95% CIs). Overall blood oxygen saturation was lower in T1D (CON: 97.6%±0.2%; T1D: 97.0%±0.1%; difference: -0.5% (95% CI -0.9% to -0.0%); p=0.034). In all participants, blood oxygen saturation increased after standing up (supine: 97.1%±0.1%; standing: 97.6%±0.2%; difference: +0.6% (95% CI 0.4% to 0.8%); p<0.001). However, the increase was smaller in T1D compared with CON (CON supine: 97.3%±0.2%; CON standing: 98.0%±0.2%; T1D supine: 96.9%±0.2%; T1D standing: 97.2%±0.1%; difference between groups in the change: -0.4% (95% CI -0.6% to -0.2%); p<0.001). Arm oxygen saturation decreased in both groups after standing and more in those with T1D. Forehead oxygen saturation decreased in both groups after standing and there were no differences between the changes when comparing the groups. CONCLUSION Compared with CON, individuals with T1D exhibit possible detrimental patterns of tissue oxygen adaptation to standing, with preserved adaptation of forehead oxygenation. Further studies are needed to explore the consequences of these differences.
Collapse
Affiliation(s)
- Jens Christian Laursen
- Complications Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Lars Jorge Diaz
- Clinical Epidemiology Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | - Marco Bordino
- Complications Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | - Per-Henrik Groop
- Department of Medicine, Division of Nephrology, Helsinki University Central Hospital, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | | | - Luciano Bernardi
- Complications Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | - Peter Rossing
- Complications Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
HypoxamiR-210 accelerates wound healing in diabetic mice by improving cellular metabolism. Commun Biol 2020; 3:768. [PMID: 33318569 PMCID: PMC7736285 DOI: 10.1038/s42003-020-01495-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/15/2020] [Indexed: 11/09/2022] Open
Abstract
Wound healing is a high energy demanding process that needs a good coordination of the mitochondria with glycolysis in the characteristic highly hypoxic environment. In diabetes, hyperglycemia impairs the adaptive responses to hypoxia with profound negative effects on different cellular compartments of wound healing. miR-210 is a hypoxia-induced microRNA that regulates cellular metabolism and processes important for wound healing. Here, we show that hyperglycemia blunted the hypoxia-dependent induction of miR-210 both in vitro and in human and mouse diabetic wounds. The impaired regulation of miR-210 in diabetic wounds is pathogenic, since local miR-210 administration accelerated wound healing specifically in diabetic but not in non-diabetic mice. miR-210 reconstitution restores the metabolic balance in diabetic wounds by reducing oxygen consumption rate and ROS production and by activating glycolysis with positive consequences on cellular migration. In conclusion, miR-210 accelerates wound healing specifically in diabetes through improvement of the cellular metabolism.
Collapse
|
7
|
Zhu L, Xiang J, Wang Q, Wang A, Li C, Tian G, Zhang H, Chen S. Revealing the Interactions Between Diabetes, Diabetes-Related Diseases, and Cancers Based on the Network Connectivity of Their Related Genes. Front Genet 2020; 11:617136. [PMID: 33381155 PMCID: PMC7767993 DOI: 10.3389/fgene.2020.617136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022] Open
Abstract
Diabetes-related diseases (DRDs), especially cancers pose a big threat to public health. Although people have explored pathological pathways of a few common DRDs, there is a lack of systematic studies on important biological processes (BPs) connecting diabetes and its related diseases/cancers. We have proposed and compared 10 protein-protein interaction (PPI)-based computational methods to study the connections between diabetes and 254 diseases, among which a method called DIconnectivity_eDMN performs the best in the sense that it infers a disease rank (according to its relation with diabetes) most consistent with that by literature mining. DIconnectivity_eDMN takes diabetes-related genes, other disease-related genes, a PPI network, and genes in BPs as input. It first maps genes in a BP into the PPI network to construct a BP-related subnetwork, which is expanded (in the whole PPI network) by a random walk with restart (RWR) process to generate a so-called expanded modularized network (eMN). Since the numbers of known disease genes are not high, an RWR process is also performed to generate an expanded disease-related gene list. For each eMN and disease, the expanded diabetes-related genes and disease-related genes are mapped onto the eMN. The association between diabetes and the disease is measured by the reachability of their genes on all eMNs, in which the reachability is estimated by a method similar to the Kolmogorov-Smirnov (KS) test. DIconnectivity_eDMN achieves an area under receiver operating characteristic curve (AUC) of 0.71 for predicting both Type 1 DRDs and Type 2 DRDs. In addition, DIconnectivity_eDMN reveals important BPs connecting diabetes and DRDs. For example, "respiratory system development" and "regulation of mRNA metabolic process" are critical in associating Type 1 diabetes (T1D) and many Type 1 DRDs. It is also found that the average proportion of diabetes-related genes interacting with DRDs is higher than that of non-DRDs.
Collapse
Affiliation(s)
- Lijuan Zhu
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
| | - Ju Xiang
- Neuroscience Research Center, Department of Basic Medical Sciences, Changsha Medical University, Changsha, China
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Qiuling Wang
- Department of Endocrinology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ailan Wang
- Geneis Beijing Co., Ltd., Beijing, China
| | - Chao Li
- Geneis Beijing Co., Ltd., Beijing, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Huajun Zhang
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
- *Correspondence: Huajun Zhang,
| | - Size Chen
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Treatment, Guangzhou, China
- Size Chen,
| |
Collapse
|
8
|
Optical coherence tomography angiography study of the retinal vascular plexuses in type 1 diabetes without retinopathy. Eye (Lond) 2019; 34:307-311. [PMID: 31273312 DOI: 10.1038/s41433-019-0513-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/21/2022] Open
Abstract
AIM Previous data suggest the existence of retinal vascular changes and impaired autoregulation in the very early stages of diabetic retinopathy (DR). We compared the retinal plexuses between patients with type 1 diabetes (T1D) without DR and a demographically similar healthy cohort, using optical coherence tomography angiography (OCT-A). METHODS Patients with T1D and no signs of DR were prospectively recruited from an outpatient clinic. Using OCT-A (AngioVue®), the parafoveal superficial (SCP) and deep (DPC) capillary plexus as well as the foveal avascular zone (FAZ) and perimeter were gathered. Mean comparison tests and linear regression analysis were used as statistical tests (STATA v14). RESULTS Studied population included 48 subjects (24 T1D). The analysis of SCP revealed an attenuation of the capillary network compared with the control group in both parafoveal (51.8 ± 4.5 vs. 55.8 ± 3.2, p < 0.001) and perifoveal (51.9 ± 3.3 vs. 53.9 ± 1.9, p = 0.01) regions. A similar finding was observed in the DCP for both parafoveal (56.4 ± 4.3 vs. 60.4 ± 2.2, p < 0.001) and perifoveal (54.7 ± 3.9 vs. 60.8 ± 3.4, p = 0.001) sectors. Also, a longer time since T1D diagnosis was associated with a larger FAZ area (p = 0.055) and perimeter (p = 0.03). CONCLUSIONS Significant differences in the retinal microvasculature were observed between healthy subjects and T1D patients using OCT-A, even before clinically detectable disease on fundus biomicroscopy.
Collapse
|