1
|
Xie M, Li X, Chen L, Zhang Y, Chen L, Hua H, Qi J. The crosstalks between vascular endothelial cells, vascular smooth muscle cells, and adventitial fibroblasts in vascular remodeling. Life Sci 2025; 361:123319. [PMID: 39701178 DOI: 10.1016/j.lfs.2024.123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Pathological vascular remodeling (VR) is characterized by structural and functional alterations in the vascular wall resulting from injury, which significantly contribute to the development of cardiovascular diseases (CVDs). The vascular wall consists primarily of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and adventitial fibroblasts (AFs), whose interactions are crucial for both the formation of the vascular system and the maintenance of mature blood vessels. Disruptions in the communication between these cell types have been implicated in the progression of VR. This review examines the complex interactions between ECs, VSMCs, and AFs in the context of CVD development, emphasizing a relatively underexplored yet potentially critical mechanism. This interaction framework likely extends to the broader cellular dialogue in the pathogenesis of CVDs, suggesting novel therapeutic strategies for intervention.
Collapse
Affiliation(s)
- Ming Xie
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Department of Pharmacy, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214499, China
| | - Xiandeng Li
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lun Chen
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yufeng Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shangdong 271000, China; Postdoctoral Workstation, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shangdong 250117, China; Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214499, China
| | - Long Chen
- Institute of Chinese Medicine of Taizhou China Medical City, Taizhou, Jiangsu 225316, China; International Centre for Genetic Engineering and Biotechnology, Taizhou, Jiangsu 225300, China
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu 214499, China.
| | - Jia Qi
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
2
|
Caballero-Herrero MJ, Jumilla E, Buitrago-Ruiz M, Valero-Navarro G, Cuevas S. Role of Damage-Associated Molecular Patterns (DAMPS) in the Postoperative Period after Colorectal Surgery. Int J Mol Sci 2023; 24:ijms24043862. [PMID: 36835273 PMCID: PMC9958549 DOI: 10.3390/ijms24043862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Anastomotic leakage (AL) is a defect of the intestinal wall at the anastomotic site and is one of the most severe complications in colorectal surgery. Previous studies have shown that the immune system response plays a significant role in the development of AL. In recent years, DAMPs (damage-associated molecular patterns) have been identified as cellular compounds with the ability to activate the immune system. The NLRP3 inflammasome plays an important role in the inflammatory responses which are mediated by DAMPs such as ATP, HSP proteins or uric acid crystals, when found in extracellular environments. Recent publications suggest that systemic concentration of DAMPs in patients with colorectal surgery may determine the inflammatory process and have a role in the occurrence of AL and other post-surgery complications. This review provides valuable knowledge about the current evidence supporting this hypothesis and highlights the possible role of these compounds in postoperative processes, which could open a new path to explore new strategies to prevent possible post-surgical complications.
Collapse
Affiliation(s)
- María José Caballero-Herrero
- Molecular Inflammation Group, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Esther Jumilla
- Molecular Inflammation Group, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Manuel Buitrago-Ruiz
- General and Digestive System Surgery, Morales Meseguer University Hospital, 30008 Murcia, Spain
| | - Graciela Valero-Navarro
- General and Digestive System Surgery, Morales Meseguer University Hospital, 30008 Murcia, Spain
- Surgical Research in Health Area, Institute of Biosanitary Research Pascual Parrilla (IMIB), Department of Surgery, Pediatrics, Obstetrics and Gynecology, University of Murcia, 30100 Murcia, Spain
- Correspondence: (G.V.-N.); (S.C.); Tel.: +34-968360900 (ext. 2358) (G.V.-N.); +34-868885039 (S.C.)
| | - Santiago Cuevas
- Molecular Inflammation Group, Biomedical Research Institute of Murcia Pascual Parrilla (IMIB), 30120 Murcia, Spain
- Correspondence: (G.V.-N.); (S.C.); Tel.: +34-968360900 (ext. 2358) (G.V.-N.); +34-868885039 (S.C.)
| |
Collapse
|
3
|
Jiang H, Li L, Zhang L, Zang G, Sun Z, Wang Z. Role of endothelial cells in vascular calcification. Front Cardiovasc Med 2022; 9:895005. [PMID: 35928939 PMCID: PMC9343736 DOI: 10.3389/fcvm.2022.895005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is active and regulates extraosseous ossification progress, which is an independent predictor of cardiovascular disease (CVD) morbidity and mortality. Endothelial cells (ECs) line the innermost layer of blood vessels and directly respond to changes in flow shear stress and blood composition. Together with vascular smooth muscle cells, ECs maintain vascular homeostasis. Increased evidence shows that ECs have irreplaceable roles in VC due to their high plasticity. Endothelial progenitor cells, oxidative stress, inflammation, autocrine and paracrine functions, mechanotransduction, endothelial-to-mesenchymal transition (EndMT), and other factors prompt ECs to participate in VC. EndMT is a dedifferentiation process by which ECs lose their cell lineage and acquire other cell lineages; this progress coexists in both embryonic development and CVD. EndMT is regulated by several signaling molecules and transcription factors and ultimately mediates VC via osteogenic differentiation. The specific molecular mechanism of EndMT remains unclear. Can EndMT be reversed to treat VC? To address this and other questions, this study reviews the pathogenesis and research progress of VC, expounds the role of ECs in VC, and focuses on the regulatory factors underlying EndMT, with a view to providing new concepts for VC prevention and treatment.
Collapse
Affiliation(s)
- Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Zhongqun Wang,
| |
Collapse
|
4
|
Gaul S, Schaeffer KM, Opitz L, Maeder C, Kogel A, Uhlmann L, Kalwa H, Wagner U, Haas J, Behzadi A, Pelegrin P, Boeckel JN, Laufs U. Extracellular NLRP3 inflammasome particles are internalized by human coronary artery smooth muscle cells and induce pro-atherogenic effects. Sci Rep 2021; 11:15156. [PMID: 34312415 PMCID: PMC8313534 DOI: 10.1038/s41598-021-94314-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation driven by intracellular activation of the NLRP3 inflammasome is involved in the pathogenesis of a variety of diseases including vascular pathologies. Inflammasome specks are released into the extracellular compartment from disrupting pyroptotic cells. The potential uptake and function of extracellular NLRP3 inflammasomes in human coronary artery smooth muscle cells (HCASMC) are unknown. Fluorescently labeled NLRP3 inflammasome particles were isolated from a mutant NLRP3-YFP cell line and used to treat primary HCASMC for 4 and 24 h. Fluorescent and expressional analyses showed that extracellular NLRP3-YFP particles are internalized into HCASMC, where they remain active and stimulate intracellular caspase-1 (1.9-fold) and IL-1β (1.5-fold) activation without inducing pyroptotic cell death. Transcriptomic analysis revealed increased expression level of pro-inflammatory adhesion molecules (ICAM1, CADM1), NLRP3 and genes involved in cytoskleleton organization. The NLRP3-YFP particle-induced gene expression was not dependent on NLRP3 and caspase-1 activation. Instead, the effects were partly abrogated by blocking NFκB activation. Genes, upregulated by extracellular NLRP3 were validated in human carotid artery atheromatous plaques. Extracellular NLRP3-YFP inflammasome particles promoted the secretion of pro-atherogenic and inflammatory cytokines such as CCL2/MCP1, CXCL1 and IL-17E, and increased HCASMC migration (1.8-fold) and extracellular matrix production, such as fibronectin (5.8-fold) which was dependent on NFκB and NLRP3 activation. Extracellular NLRP3 inflammasome particles are internalized into human coronary artery smooth muscle cells where they induce pro-inflammatory and pro-atherogenic effects representing a novel mechanism of cell-cell communication and perpetuation of inflammation in atherosclerosis. Therefore, extracellular NLRP3 inflammasomes may be useful to improve the diagnosis of inflammatory diseases and the development of novel anti-inflammatory therapeutic strategies.
Collapse
Affiliation(s)
- Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany.
| | - Karen Marie Schaeffer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Lena Opitz
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Christina Maeder
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Alexander Kogel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Luisa Uhlmann
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Hermann Kalwa
- Medical Faculty, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Leipzig University, Leipzig, Germany
| | - Ulf Wagner
- Klinik für Gastroenterologie, Hepatologie, Infektionsmedizin, Rheumatologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Jan Haas
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Amirhossein Behzadi
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Pablo Pelegrin
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de La Arrixaca, Murcia, Spain
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| |
Collapse
|
5
|
Chong ZZ, Souayah N. SARS-CoV-2 Induced Neurological Manifestations Entangles Cytokine Storm That Implicates For Therapeutic Strategies. Curr Med Chem 2021; 29:2051-2074. [PMID: 33970839 DOI: 10.2174/0929867328666210506161543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
The new coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can present with neurological symptoms and induce neurological complications. The involvement in both the central and peripheral nervous systems in COVID-19 patients has been associated with direct invasion of the virus and the induction of cytokine storm. This review discussed the pathways for the virus invasion into the nervous system and characterized the SARS-CoV-2 induced cytokine storm. In addition, the mechanisms underlying the immune responses and cytokine storm induction after SARS-CoV-2 infection were also discussed. Although some neurological symptoms are mild and disappear after recovery from infection, some severe neurological complications contribute to the mortality of COVID-19 patients. Therefore, the insight into the cause of SARS-CoV-2 induced cytokine storm in context with neurological complications will formulate the novel management of the disease and further identify new therapeutic targets for COVID-19.
Collapse
Affiliation(s)
- Zhao-Zhong Chong
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Nizar Souayah
- Department of Neurology, Rutgers New Jersey Medical School, 90 Bergen Street Room Suite 8100, Newark, NJ 07101, United States
| |
Collapse
|
6
|
Research Progress on Anti-Inflammatory Effects and Mechanisms of Alkaloids from Chinese Medical Herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1303524. [PMID: 32256634 PMCID: PMC7104124 DOI: 10.1155/2020/1303524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
As the spectrum of diseases keeps changing and life pace keeps going faster, the probability and frequency of diseases caused by human inflammatory reactions also keep increasing. How to develop effective anti-inflammatory drugs has become the hotspot of researches. It has been found that alkaloids from Chinese medical herbs have anti-inflammatory, analgesic, antitumor, anticonvulsant, diuretic, and antiarrhythmic effects, among which the anti-inflammatory effect is very prominent and commonly used in the treatment of rheumatoid arthritis, ankylosing spondylitis, and other rheumatic immune diseases, but its mechanism of action has not been well explained. Based on this, this paper will classify alkaloids according to structural types and review the plant sources, applicable diseases, and anti-inflammatory mechanisms of 16 kinds of alkaloids commonly used in clinical treatment, such as berberine, tetrandrine, and stephanine, with the aim of providing a reference for drug researches and clinical applications.
Collapse
|