1
|
Hassanpour M, Salybkov AA, Kobayashi S, Asahara T. Anti-inflammatory Prowess of endothelial progenitor cells in the realm of biology and medicine. NPJ Regen Med 2024; 9:27. [PMID: 39349482 PMCID: PMC11442670 DOI: 10.1038/s41536-024-00365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/23/2024] [Indexed: 10/02/2024] Open
Abstract
Endothelial inflammation plays a crucial role in vascular-related diseases, a leading cause of global mortality. Among various cellular players, endothelial progenitor cells (EPCs) emerge as non-differentiated endothelial cells circulating in the bloodstream. Recent evidence highlights the transformative role of EPCs in shifting from an inflammatory/immunosuppressive crisis to an anti-inflammatory/immunomodulatory response. Despite the importance of these functions, the regulatory mechanisms governing EPC activities and their physiological significance in vascular regenerative medicine remain elusive. Surprisingly, the current literature lacks a comprehensive review of EPCs' effects on inflammatory processes. This narrative review aims to fill this gap by exploring the cutting-edge role of EPCs against inflammation, from molecular intricacies to broader medical perspectives. By examining how EPCs modulate inflammatory responses, we aim to unravel their anti-inflammatory significance in vascular regenerative medicine, deepening insights into EPCs' molecular mechanisms and guiding future therapeutic strategies targeting vascular-related diseases.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Shonan Research, Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell therapy & Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Amankeldi A Salybkov
- Shonan Research, Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Center for Cell therapy & Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Shuzo Kobayashi
- Shonan Research, Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan
| | - Takayuki Asahara
- Shonan Research, Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan.
- Center for Cell therapy & Regenerative Medicine, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan.
| |
Collapse
|
2
|
Nair PC, Mangoni AA, Rodionov RN. Redefining the biological and pathophysiological role of dimethylarginine dimethylaminohydrolase 2. Trends Mol Med 2024; 30:552-561. [PMID: 38553332 DOI: 10.1016/j.molmed.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 06/15/2024]
Abstract
The enzyme dimethylarginine dimethylaminohydrolase (DDAH) 1 metabolizes asymmetric dimethylarginine (ADMA), a critical endogenous cardiovascular risk factor. In the past two decades, there has been significant controversy about whether DDAH2, the other DDAH isoform, is also able to directly metabolize ADMA. There has been evidence that DDAH2 regulates several critical processes involved in cardiovascular and immune homeostasis. However, the molecular mechanisms underpinning these effects are unclear. In this opinion, we discuss the previous and current knowledge of ADMA metabolism by DDAH in light of a recent consortium study, which convincingly demonstrated that DDAH2 is not capable of metabolizing ADMA, unlike DDAH1. Thus, further research in this field is needed to uncover the molecular mechanisms of DDAH2 and its role in various disorders.
Collapse
Affiliation(s)
- Pramod C Nair
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, SA, Australia; Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA, Australia
| | - Roman N Rodionov
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Transplantation of Endothelial Progenitor Cells: Summary and prospect. Acta Histochem 2023; 125:151990. [PMID: 36587456 DOI: 10.1016/j.acthis.2022.151990] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
Endothelial Progenitor Cells (EPCs) are precursor cells of endothelial cells (ECs), which can differentiate into vascular ECs, protect from endothelial dysfunction and tissue ischemia, and reduce vascular hyperplasia. Due to these functions, EPCs are used as a candidate cell source for transplantation strategies. In recent years, a great progress was achieved in EPCs biology research, and EPCs transplantation has become a research hotspot. At present, transplanted EPCs have been used to treat ischemic diseases due to their powerful vasculogenesis and beneficial paracrine effects. Although EPCs transplantation has been proved to play an important role, the clinical application of EPCs still faces many challenges. This review briefly summarized the basic characteristics of EPCs, the process of EPCs transplantation promoting the healing of ischemic tissue, and the ways to improve the efficiency of EPCs transplantation. In addition, the application of EPCs in neurological improvement, cardiovascular and respiratory diseases and the challenges and problems in clinical application of EPCs were also discussed. In the end, the application of EPCs transplantation in regenerative medicine and tissue engineering was discussed.
Collapse
|
4
|
Zhang D, Wu H, Liu D, Li Y, Zhou G. Insights of upregulating of DDAH2 expression by pharmacological action. Int J Cardiol 2022; 364:103. [PMID: 35660556 DOI: 10.1016/j.ijcard.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Dong Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China; Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| | - Hui Wu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China; Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China.
| | - Di Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China; Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| | - Yunzhao Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China; Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| | - Gang Zhou
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang 443000, China; Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, China; Central Laboratory, Yichang Central People's Hospital, Yichang 443000, China
| |
Collapse
|
5
|
Leng M, Peng Y, Pan M, Wang H. Experimental Study on the Effect of Allogeneic Endothelial Progenitor Cells on Wound Healing in Diabetic Mice. J Diabetes Res 2021; 2021:9962877. [PMID: 34722777 PMCID: PMC8553455 DOI: 10.1155/2021/9962877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are involved in the neovascularization in traumatic and ischemic sites, but EPCs are "detained" in bone marrow under diabetic conditions, which results in reduction of the number of EPCs and their biological activity in peripheral blood. Based on our previous study to mobilize autologous bone marrow EPCs by administering AMD3100+G-CSF to realize the optimal effect, our present study is aimed at exploring the effects of transplanting EPCs locally in a wound model of diabetic mice. First, we prepared and identified EPCs, and the biological functions and molecular characteristics were compared between EPCs from DB/+ and DB/DB mice. Then, we performed full-thickness skin resection in DB/DB mice and tested the effect of local transplantation of EPCs on skin wound healing. The wound healing process was recorded using digital photographs. The animals were sacrificed on postoperative days 7, 14, and 17 for histological and molecular analysis. Our results showed that DB/+ EPCs were biologically more active than those of DB/DB EPCs. When compared with the control group, local transplantation of EPCs accelerated wound healing in DB/DB mice by promoting wound granulation tissue formation, angiogenesis, and collagen fiber deposition, but there was no significant difference in wound healing between DB/+ EPCs and DB/DB EPCs transplanted into the wound. Furthermore, local transplantation of EPCs promoted the expression of SDF-1, CXCR4, and VEGF. We speculated that EPC transplantation may promote wound healing through the SDF-1/CXCR4 axis. This point is worth exploring further. Present data are of considerable significance because they raise the possibility of promoting wound healing by isolating autologous EPCs from the patient, which provides a new approach for the clinical treatment of diabetic wounds in the future.
Collapse
Affiliation(s)
- Min Leng
- Department of Burns, The Second Affiliated Hospital, Kunming Medical University, 374 Dian Burma Road, Wuhua District, Kunming 650000, China
- Department of Burns and Plastic, Dazhou Central Hospital, 56 Nanyuemiao Street, Tongchuan District, Dazhou 635000, China
| | - Ying Peng
- Department of Burns, The Second Affiliated Hospital, Kunming Medical University, 374 Dian Burma Road, Wuhua District, Kunming 650000, China
- The First Affiliated Hospital, Kunming Medical Uiversity, 1168 Chunrong West Road, Yuhua Street, Kunming 650000, China
| | - Manchang Pan
- Department of Burns, The Second Affiliated Hospital, Kunming Medical University, 374 Dian Burma Road, Wuhua District, Kunming 650000, China
- Department of Burns, The Changzhou Geriatric Hospital Affiliated with Soochow University, Changzhou 213000, China
| | - Hong Wang
- Department of Burns, The Second Affiliated Hospital, Kunming Medical University, 374 Dian Burma Road, Wuhua District, Kunming 650000, China
| |
Collapse
|