1
|
Salinas L, Montgomery CB, Figueroa F, Thai PN, Chiamvimonvat N, Cortopassi G, Dedkova EN. Sexual dimorphism in a mouse model of Friedreich's ataxia with severe cardiomyopathy. Commun Biol 2024; 7:1250. [PMID: 39363102 PMCID: PMC11449905 DOI: 10.1038/s42003-024-06962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Friedreich's ataxia (FA) is an autosomal recessive disorder caused by reduced frataxin (FXN) expression in mitochondria, where the lethal component is cardiomyopathy. Using the conditional Fxnflox/null::MCK-Cre knock-out (Fxn-cKO) mouse model, we discovered significant sex differences in the progression towards heart failure, with Fxn-cKO males exhibiting a worse cardiac phenotype, low survival rate, kidney and reproductive organ deficiencies. These differences are likely due to a decline in testosterone in Fxn-cKO males. The decrease in testosterone was related to decreased expression of proteins involved in cholesterol transfer into the mitochondria: StAR and TSPO on the outer mitochondrial membrane, and the cholesterol side-chain cleavage enzyme P450scc and ferredoxin on the inner mitochondrial membrane. Expression of excitation-contraction coupling proteins (L-type calcium channel, RyR2, SERCA2, phospholamban and CaMKIIδ) was decreased significantly more in Fxn-cKO males. This is the first study that extensively investigates the sexual dimorphism in FA mouse model with cardiac calcium signaling impairment.
Collapse
Grants
- T32 HL086350 NHLBI NIH HHS
- R01 HL085727 NHLBI NIH HHS
- I01 CX001490 CSRD VA
- R01 HL101235 NHLBI NIH HHS
- R01 HL137228 NHLBI NIH HHS
- I01 BX000576 BLRD VA
- S10 OD010389 NIH HHS
- R01 HL085844 NHLBI NIH HHS
- R01 HL155907 NHLBI NIH HHS
- 1R01HL155907-1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F32 HL149288 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Friedreich's Ataxia Research Alliance (FARA)
- University of California Davis CRCF Pilot & Feasibility Award 181031 (to END), University of California Innovative Development Award (to END) Harold S. Geneen Charitable Trust Awards Program for Coronary Heart Disease Research (to PNT) VA Merit Review Grant I01 BX000576 and I01 CX001490 (to NC) Research Award from the Rosenfeld Foundation (to NC.
- Pre-doctoral fellowship from NIH R01HL155907-02S1 Diversity Supplement (to LS).
- Pre-doctoral fellowship from NIH T32 HL086350 Training Grant in Basic & Translational Cardiovascular Science
- Postdoctoral fellowship from NIH T32HL086350 Training Grant in Basic & Translational Cardiovascular Science and NIH F32HL149288 and Harold S. Geneen Charitable Trust Awards Program for Coronary Heart Disease Research (to PNT).
- NIH R01 HL085727, HL085844, HL137228, VA Merit Review Grant I01 BX000576 and I01 CX001490, AHA 23SFRNCCS1052478, 23SFRNPCS1060482, and Research Award from the Rosenfeld Foundation (to NC).
Collapse
Affiliation(s)
- Lili Salinas
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| | - Claire B Montgomery
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| | - Francisco Figueroa
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| | - Phung N Thai
- Department of Internal Medicine, University of California, Davis, CA, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, CA, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, CA, USA
| | - Elena N Dedkova
- Department of Molecular Biosciences, University of California, Davis, CA, USA.
- Department of Basic Sciences, California Northstate University, Elk Grove, CA, USA.
| |
Collapse
|
2
|
Dissanayake S, Krishna R, Pathirana PN, Horne MK, Smulewicz DJ, Corben LA. Continuous Optimization of a Hierarchical Bayesian Network for Friedreich's Ataxia Severity Classification. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039730 DOI: 10.1109/embc53108.2024.10781628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Machine learning algorithms for rare disorders, such as Friedreich's Ataxia (FRDA), often suffer from a lack of data. Therefore, the ability for continuous optimization of an objective assessment model would be very useful as a clinical decision support system. In this study, we propose a Bayesian Network(BN) system for FRDA severity estimation that incorporates a Bayesian Statistical updating system to continuously improve the predictive ability while providing an easily interpretable graphical model. This can work to improve the understanding of the model by the clinician, thus creating trust in the machine learning process. Furthermore, we demonstrate that by using the updating mechanism, the BN model gives a goodness-of-fit score of 0.95, a root mean square error of 9.35 and a mean absolute error of 6.72, which outperforms other regression approaches as well as improves upon the base BN by 2% in goodness of fit, roughly 1% in RMSE and 6% in MAE.
Collapse
|
3
|
Shen MM, Rummey C, Lynch DR. Phenotypic variation of FXN compound heterozygotes in a Friedreich ataxia cohort. Ann Clin Transl Neurol 2024; 11:1110-1121. [PMID: 38396238 PMCID: PMC11093247 DOI: 10.1002/acn3.52027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
OBJECTIVE Most individuals with Friedreich ataxia (FRDA) have homozygous GAA triplet repeat expansions in the FXN gene, correlating with a typical phenotype of ataxia and cardiomyopathy. A minority are compound heterozygotes carrying a GAA expansion on one allele and a mutation on the other. The study aim was to examine phenotypic variation among compound heterozygotes. METHODS Data on FXN mutations were obtained from the Friedreich Ataxia Clinical Outcome Measures Study (FA-COMS). We compared clinical features in a single-site FA-COMS cohort of 51 compound heterozygous and 358 homozygous patients, including quantitative measures of cardiac, neurologic, and visual disease progression. RESULTS Non-GAA repeat mutations were associated with reduced cardiac disease, and patients with minimal/no function mutations otherwise had a typical FRDA phenotype but with significantly more severe progression. The partial function mutation group was characterized by relative sparing of bulbar and upper limb function, as well as particularly low cardiac involvement. Other clinical features in this group, including optic atrophy and diabetes mellitus, varied widely depending on the specific type of partial function mutation. INTERPRETATION These data support that the typical FRDA phenotype is driven by frataxin deficiency, especially severe in compound heterozygotes with minimal/no function mutations, whereas the heterogeneous presentations of those with partial function mutations may indicate other contributing factors to FRDA pathogenesis.
Collapse
Affiliation(s)
- Megan M. Shen
- Division of NeurologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Perelman School of Medicine, University of Pennsylvania.PhiladelphiaPennsylvaniaUSA
| | | | - David R. Lynch
- Division of NeurologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Perelman School of Medicine, University of Pennsylvania.PhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Perfitt TL, Huichalaf C, Gooch R, Kuperman A, Ahn Y, Chen X, Ullas S, Hirenallur-Shanthappa D, Zhan Y, Otis D, Whiteley LO, Bulawa C, Martelli A. A modified mouse model of Friedreich's ataxia with conditional Fxn allele homozygosity delays onset of cardiomyopathy. Am J Physiol Heart Circ Physiol 2024; 326:H357-H369. [PMID: 38038720 DOI: 10.1152/ajpheart.00496.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Friedreich's ataxia (FA) is an autosomal recessive disorder caused by a deficiency in frataxin (FXN), a mitochondrial protein that plays a critical role in the synthesis of iron-sulfur clusters (Fe-S), vital inorganic cofactors necessary for numerous cellular processes. FA is characterized by progressive ataxia and hypertrophic cardiomyopathy, with cardiac dysfunction as the most common cause of mortality in patients. Commonly used cardiac-specific mouse models of FA use the muscle creatine kinase (MCK) promoter to express Cre recombinase in cardiomyocytes and striated muscle cells in mice with one conditional Fxn allele and one floxed-out/null allele. These mice quickly develop cardiomyopathy that becomes fatal by 9-11 wk of age. Here, we generated a cardiac-specific model with floxed Fxn allele homozygosity (MCK-Fxnflox/flox). MCK-Fxnflox/flox mice were phenotypically normal at 9 wk of age, despite no detectable FXN protein expression. Between 13 and 15 wk of age, these mice began to display progressive cardiomyopathy, including decreased ejection fraction and fractional shortening and increased left ventricular mass. MCK-Fxnflox/flox mice began to lose weight around 16 wk of age, characteristically associated with heart failure in other cardiac-specific FA models. By 18 wk of age, MCK-Fxnflox/flox mice displayed elevated markers of Fe-S deficiency, cardiac stress and injury, and cardiac fibrosis. This modified model reproduced important pathophysiological and biochemical features of FA over a longer timescale than previous cardiac-specific mouse models, offering a larger window for studying potential therapeutics.NEW & NOTEWORTHY Previous cardiac-specific frataxin knockout models exhibit rapid and fatal cardiomyopathy by 9 wk of age. This severe phenotype poses challenges for the design and execution of intervention studies. We introduce an alternative cardiac-specific model, MCK-Fxnflox/flox, with increased longevity and delayed onset of all major phenotypes. These phenotypes develop to the same severity as previous models. Thus, this new model provides the same cardiomyopathy-associated mortality with a larger window for potential studies.
Collapse
Affiliation(s)
- Tyler L Perfitt
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Claudia Huichalaf
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Renea Gooch
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Anna Kuperman
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Youngwook Ahn
- Target Sciences, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Xian Chen
- Comparative Medicine, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Soumya Ullas
- Comparative Medicine, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Dinesh Hirenallur-Shanthappa
- Comparative Medicine, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Yutian Zhan
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Diana Otis
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Laurence O Whiteley
- Drug Safety Research and Development, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Christine Bulawa
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| | - Alain Martelli
- Rare Disease Research Unit, Worldwide Research, Development and Medical, Pfizer, Incorporated, Cambridge, Massachusetts, United States
| |
Collapse
|
5
|
Peterson AN, Hickerson LC, Pschirrer ER, Friend LB, Taub CC. Management of Friedreich Ataxia-Associated Cardiomyopathy in Pregnancy: A Review of the Literature. Am J Cardiol 2024; 210:118-129. [PMID: 37838071 DOI: 10.1016/j.amjcard.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
A major manifestation of Friedreich ataxia (FRDA) is cardiomyopathy, caused by mitochondrial proliferation in myocytes. Because the lifespan for patients with FRDA improves with better treatment modalities, more patients are becoming pregnant, meaning that more medical providers must know how to care for this population. This report provides a review of the literature on multidisciplinary management of pregnant patients with FRDA and cardiomyopathy from preconception through lactation. A cardio-obstetrics team, including cardiology, anesthesiology, and obstetrics, should be involved for this entire period. All patients should be counseled on pregnancy risk using elements of existing stratification systems, and contraception should be discussed, highlighting the safety of intrauterine devices. Electrocardiogram should be obtained at baseline and each trimester, looking for atrial arrhythmias and ST-segment changes, as should transthoracic echocardiogram, with a focus on left ventricular ejection fraction-which is typically normal in FRDA cardiomyopathy-and relative wall thickness and global longitudinal strain-which tend to decrease as cardiomyopathy progresses. Brain natriuretic peptide is also a helpful marker to detect adverse events. If heart failure develops, it should be treated like any other etiology of heart failure during pregnancy. Atrial arrhythmias should be treated with β blockers or electrical cardioversion and anticoagulation, as necessary. Most patients with FRDA can deliver vaginally, and neuraxial analgesia is recommended during labor because of the risks associated with general anesthesia. Breastfeeding is encouraged, even for those taking cardiac medications.
Collapse
Affiliation(s)
- Ashleigh N Peterson
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Leigh C Hickerson
- Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - E Rebecca Pschirrer
- Department of Obstetrics and Gynecology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Lynsy B Friend
- Heart and Vascular Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Cynthia C Taub
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York.
| |
Collapse
|
6
|
Dissanayake S, Krishna R, Pathirana PN, Horne MK, Szmulewicz DJ, Corben LA. A Bayesian Network Approach for Friedreich Ataxia Severity Classification using Probability Modelling. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082810 DOI: 10.1109/embc40787.2023.10340184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Friedreich ataxia (FRDA) requires an objective measure of severity to overcome the shortcoming of clinical scales when applied to trials for treatments. This is hindered due to the rarity of the disease resulting in small datasets. Further, the published quantitative measures for ataxia do not incorporate or underutilise expert knowledge. Bayesian Networks (BNs) provide a structure to adopt both subjective and objective measures to give a severity value while addressing these issues. The BN presented in this paper uses a hybrid learning approach, which utilises both subjective clinical assessments as well as instrumented measurements of disordered upper body movement of individuals with FRDA. The final model's estimates gave a 0.93 Pearson correlation with low error, 9.42 root mean square error and 7.17 mean absolute error. Predicting the clinical scales gave 94% accuracy for Upright Stability and Lower Limb Coordination and 67% accuracy for Functional Staging, Upper Limb Coordination and Activities of Daily Living.Clinical relevance- Due to the nature of rare diseases conventional machine learning is difficult. Most clinical trials only generate small datasets. This approach allows the combination of expert knowledge with instrumented measures to develop a clinical decision support system for the prediction of severity.
Collapse
|
7
|
Keita M, McIntyre K, Rodden LN, Schadt K, Lynch DR. Friedreich ataxia: clinical features and new developments. Neurodegener Dis Manag 2022; 12:267-283. [PMID: 35766110 PMCID: PMC9517959 DOI: 10.2217/nmt-2022-0011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Friedreich's ataxia (FRDA), a neurodegenerative disease characterized by ataxia and other neurological features, affects 1 in 50,000-100,000 individuals in the USA. However, FRDA also includes cardiac, orthopedic and endocrine dysfunction, giving rise to many secondary disease characteristics. The multifaceted approach for clinical care has necessitated the development of disease-specific clinical care guidelines. New developments in FRDA include the advancement of clinical drug trials targeting the NRF2 pathway and frataxin restoration. Additionally, a novel understanding of gene silencing in FRDA, reflecting a variegated silencing pattern, will have applications to current and future therapeutic interventions. Finally, new perspectives on the neuroanatomy of FRDA and its developmental features will refine the time course and anatomical targeting of novel approaches.
Collapse
Affiliation(s)
- Medina Keita
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kellie McIntyre
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Layne N Rodden
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim Schadt
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Lynch
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Payne RM. Cardiovascular Research in Friedreich Ataxia: Unmet Needs and Opportunities. JACC Basic Transl Sci 2022; 7:1267-1283. [PMID: 36644283 PMCID: PMC9831864 DOI: 10.1016/j.jacbts.2022.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 01/18/2023]
Abstract
Friedreich Ataxia (FRDA) is an autosomal recessive disease in which a mitochondrial protein, frataxin, is severely decreased in its expression. In addition to progressive ataxia, patients with FRDA often develop a cardiomyopathy that can be hypertrophic. This cardiomyopathy is unlike the sarcomeric hypertrophic cardiomyopathies in that the hypertrophy is associated with massive mitochondrial proliferation within the cardiomyocyte rather than contractile protein overexpression. This is associated with atrial arrhythmias, apoptosis, and fibrosis over time, and patients often develop heart failure leading to premature death. The differences between this mitochondrial cardiomyopathy and the more common contractile protein hypertrophic cardiomyopathies can be a source of misunderstanding in the management of these patients. Although imaging studies have revealed much about the structure and function of the heart in this disease, we still lack an understanding of many important clinical and fundamental molecular events that determine outcome of the heart in FRDA. This review will describe the current basic and clinical understanding of the FRDA heart, and most importantly, identify major gaps in our knowledge that represent new directions and opportunities for research.
Collapse
Affiliation(s)
- R. Mark Payne
- Address for correspondence: Dr R. Mark Payne, Division of Pediatric Cardiology, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut, R4 302b, Indianapolis, Indiana 46202, USA.
| |
Collapse
|