1
|
Myers MC, Wang S, Zhong Y, Maruyama S, Bueno C, Bastien A, Fazeli MS, Golchin N. Prevalence of Genetically Associated Dilated Cardiomyopathy: A Systematic Literature Review and Meta-Analysis. Cardiol Res 2024; 15:233-245. [PMID: 39205965 PMCID: PMC11349141 DOI: 10.14740/cr1680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a leading cause of heart failure and cardiac transplantation globally. Disease-associated genetic variants play a significant role in the development of DCM. Accurately determining the prevalence of genetically associated DCM (genetic DCM) is important for developing targeted prevention strategies. This review synthesized published literature on the global prevalence of genetic DCM across various populations, focusing on two of the most common variants: titin (TTN) and myosin heavy chain 7 (MYH7). Methods MEDLINE® and Embase were searched from database inception to September 19, 2022 for English-language studies reporting the prevalence of genetic DCM within any population. Studies using family history as a proxy for genetic DCM were excluded. Results Of 2,736 abstracts, 57 studies were included. Among the global adult or mixed (mostly adults with few pediatric patients) DCM population, median prevalence was 20.2% (interquartile range (IQR): 16.3-36.0%) for overall genetic DCM, 11.4% (IQR: 8.2-17.8%) for TTN-associated DCM, and 3.2% (IQR: 1.8-5.2%) for MYH7-associated DCM. Global prevalence of overall pediatric genetic DCM within the DCM population was similar (weighted mean: 21.3%). Few studies reported data on the prevalence of genetic DCM within the general population. Conclusions Our study identified variable prevalence estimates of genetic DCM across different populations and geographic locations. The current evidence may underestimate the genetic contributions due to limited screening and detection of potential DCM patients. Epidemiological studies using long-read whole genome sequencing to identify structural variants or non-coding variants are needed, as well as large cohort datasets with genotype-phenotype correlation analyses.
Collapse
Affiliation(s)
| | - Su Wang
- Evidinno Outcomes Research Inc., Vancouver, BC, Canada
| | - Yue Zhong
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | |
Collapse
|
2
|
de Uña-Iglesias D, Ochoa JP, Monserrat L, Barriales-Villa R. Clinical Relevance of the Systematic Analysis of Copy Number Variants in the Genetic Study of Cardiomyopathies. Genes (Basel) 2024; 15:774. [PMID: 38927710 PMCID: PMC11203228 DOI: 10.3390/genes15060774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiomyopathies (CMs), one of the main causes of sudden death among the young population, are a heterogeneous group of myocardial diseases, usually with a genetic cause. Next-Generation Sequencing (NGS) has expanded the genes studied for CMs; however, the yield is still around 50%. The systematic study of Copy Number Variants (CNVs) could contribute to improving our diagnostic capacity. These alterations have already been described as responsible for cardiomyopathies in some cases; however, their impact has been rarely assessed. We analyzed the clinical significance of CNVs in cardiomyopathies by studying 11,647 affected patients, many more than those considered in previously published studies. We evaluated the yield of the systematic study of CNVs in a production context using NGS and a novel CNV detection software tool v2.0 that has demonstrated great efficacy, maximizing sensitivity and avoiding false positives. We obtained a CNV analysis yield of 0.8% that fluctuated depending on the type of cardiomyopathy studied (0.29% HCM, 1.41% DCM, 1.88% ARVC, 1.8% LVNC, 1.45% RCM), and we present the frequency of occurrence for 18 genes that agglutinate the 95 pathogenic/likely pathogenic CNVs detected. We conclude the importance of including in diagnostic tests a systematic study of these genetic alterations for the different cardiomyopathies.
Collapse
Affiliation(s)
- David de Uña-Iglesias
- Universidad de A Coruña, 15071 A Coruña, Spain;
- Health in Code, 46024 Valencia, Spain;
| | - Juan Pablo Ochoa
- Health in Code, 46024 Valencia, Spain;
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
| | | | - Roberto Barriales-Villa
- Universidad de A Coruña, 15071 A Coruña, Spain;
- Instituto de Investigación Biomédica de A Coruña (INIBIC), 15006 A Coruña, Spain
- Complexo Hospitalario de A Coruña, Servizo de Saúde (SERGAS), 15006 A Coruña, Spain
- Centro de Investigación Biomédica en Red (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
3
|
Akinrinade O, Lesurf R, Lougheed J, Mondal T, Smythe J, Altamirano-Diaz L, Oechslin E, Mital S. Age and Sex Differences in the Genetics of Cardiomyopathy. J Cardiovasc Transl Res 2023; 16:1287-1302. [PMID: 37477868 PMCID: PMC10721711 DOI: 10.1007/s12265-023-10411-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
Cardiomyopathy has variable penetrance. We analyzed age and sex-related genetic differences in 1,397 cardiomyopathy patients (Ontario, UK) with whole genome sequencing. Pediatric cases (n = 471) harbored more deleterious protein-coding variants in Tier 1 cardiomyopathy genes compared to adults (n = 926) (34.6% vs 25.9% respectively, p = 0.0015), with variant enrichment in constrained coding regions. Pediatric patients had a higher burden of sarcomere and lower burden of channelopathy gene variants compared to adults. Specifically, pediatric patients had more MYH7 and MYL3 variants in hypertrophic cardiomyopathy, and fewer TTN truncating variants in dilated cardiomyopathy. MYH7 variants clustered in the myosin head and neck domains in children. OBSCN was a top mutated gene in adults, enriched for protein-truncating variants. In dilated cardiomyopathy, female patients had a higher burden of z-disc gene variants compared to males. Genetic differences may explain age and sex-related variability in cardiomyopathy penetrance. Genotype-guided predictions of age of onset can inform pre-test genetic counseling. Pediatric cardiomyopathy patients were more likely to be genotype-positive than adults with a higher burden of variants in MYH7, MYL3, TNNT2, VCL. Adults had a higher burden of OBSCN and TTN variants. Females with dilated cardiomyopathy (DCM) had a higher burden of z-disc gene variants compared to males.
Collapse
Affiliation(s)
- Oyediran Akinrinade
- Genetics and Genome Biology Program, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
- St. George's University School of Medicine, St. George's, West Indies, Grenada
| | - Robert Lesurf
- Genetics and Genome Biology Program, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Jane Lougheed
- Division of Cardiology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Tapas Mondal
- Division of Cardiology, Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON, Canada
| | - John Smythe
- Division of Cardiology, Department of Pediatrics, Kingston General Hospital, Kingston, ON, Canada
| | - Luis Altamirano-Diaz
- Division of Cardiology, Department of Pediatrics, London Health Sciences Centre, London, ON, Canada
| | - Erwin Oechslin
- Division of Cardiology, Toronto Adult Congenital Heart Disease Program at Peter Munk Cardiac Centre, Department of Medicine, University Health Network, and University of Toronto, Toronto, ON, Canada
| | - Seema Mital
- Genetics and Genome Biology Program, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada.
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Alimohamed MZ, Boven LG, van Dijk KK, Vos YJ, Hoedemaekers YM, van der Zwaag PA, Sijmons RH, Jongbloed JD, Sikkema-Raddatz B, Westers H. SEPT–GD: A decision tree to prioritise potential RNA splice variants in cardiomyopathy genes for functional splicing assays in diagnostics. Gene 2023; 851:146984. [DOI: 10.1016/j.gene.2022.146984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/09/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
5
|
Nazarenko MS, Sleptcov AA, Puzyrev VP. “Mendelian Code” in the Genetic Structure of Common Multifactorial Diseases. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Jurcut R, Fetecău B. Genetic testing for cardiomyopathies - when science and health policies join in personalizing cardiovascular prevention. Eur J Prev Cardiol 2022; 29:1785-1788. [PMID: 35915551 DOI: 10.1093/eurjpc/zwac160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ruxandra Jurcut
- Expert Center for Rare Cardiac Genetic Diseases, Emergency Institute for Cardiovascular Diseases "Prof.dr.C.C.Iliescu", BucharestRomania.,Department of Cardiology, University of Medicine and Pharmacy "Carol Davila", BucharestRomania
| | - Bogdana Fetecău
- Expert Center for Rare Cardiac Genetic Diseases, Emergency Institute for Cardiovascular Diseases "Prof.dr.C.C.Iliescu", BucharestRomania.,Department of Cardiology, University of Medicine and Pharmacy "Carol Davila", BucharestRomania
| |
Collapse
|
7
|
Alimohamed MZ, Westers H, Vos YJ, Van der Velde KJ, Sijmons RH, Van der Zwaag PA, Sikkema-Raddatz B, Jongbloed JDH. Validation of New Gene Variant Classification Methods: a Field-Test in Diagnostic Cardiogenetics. Front Genet 2022; 13:824510. [PMID: 35299955 PMCID: PMC8921548 DOI: 10.3389/fgene.2022.824510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: In the molecular genetic diagnostics of Mendelian disorders, solutions are needed for the major challenge of dealing with the large number of variants of uncertain significance (VUSs) identified using next-generation sequencing (NGS). Recently, promising approaches using constraint metrics to calculate case excess scores (CE), etiological fractions (EF), and gnomAD-derived constraint scores have been reported that estimate the likelihood of rare variants in specific genes or regions that are pathogenic. Our objective is to study the usability of these constraint data into variant interpretation in a diagnostic setting, using our cardiomyopathy cohort.Methods and Results: Patients (N = 2002) referred for clinical genetic diagnostics underwent NGS testing of 55–61 genes associated with cardiomyopathies. Previously classified likely pathogenic (LP) and pathogenic (P) variants were used to validate the use of data from CE, EF, and gnomAD constraint analyses for (re)classification of associated variant types in specific cardiomyopathy subtype-related genes. The classifications corroborated in 94% (354/378) of cases. Next, we reclassified 23 unique VUSs to LP, increasing the diagnostic yield by 1.2%. In addition, 106 unique VUSs (5.3% of patients) were prioritized for co-segregation or functional analyses.Conclusions: Our analysis confirms that the use of constraint metrics data can improve variant interpretation, and we, therefore, recommend using constraint scores on other cohorts and disorders and its inclusion in variant interpretation protocols.
Collapse
Affiliation(s)
- Mohamed Z. Alimohamed
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
- Department of Research and Training, Shree Hindu Mandal Hospital, Dar-es-salaam, Tanzania
- Tanzania Human Genetics Organization, Groningen, Netherlands
- *Correspondence: Mohamed Z. Alimohamed, ; Jan D. H. Jongbloed,
| | - Helga Westers
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Yvonne J. Vos
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - K. Joeri Van der Velde
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Rolf H. Sijmons
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Paul A. Van der Zwaag
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Birgit Sikkema-Raddatz
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan D. H. Jongbloed
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Mohamed Z. Alimohamed, ; Jan D. H. Jongbloed,
| |
Collapse
|
8
|
Ecovoiu AA, Ratiu AC, Micheu MM, Chifiriuc MC. Inter-Species Rescue of Mutant Phenotype-The Standard for Genetic Analysis of Human Genetic Disorders in Drosophila melanogaster Model. Int J Mol Sci 2022; 23:2613. [PMID: 35269756 PMCID: PMC8909942 DOI: 10.3390/ijms23052613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Drosophila melanogaster (the fruit fly) is arguably a superstar of genetics, an astonishing versatile experimental model which fueled no less than six Nobel prizes in medicine. Nowadays, an evolving research endeavor is to simulate and investigate human genetic diseases in the powerful D. melanogaster platform. Such a translational experimental strategy is expected to allow scientists not only to understand the molecular mechanisms of the respective disorders but also to alleviate or even cure them. In this regard, functional gene orthology should be initially confirmed in vivo by transferring human or vertebrate orthologous transgenes in specific mutant backgrounds of D. melanogaster. If such a transgene rescues, at least partially, the mutant phenotype, then it qualifies as a strong candidate for modeling the respective genetic disorder in the fruit fly. Herein, we review various examples of inter-species rescue of relevant mutant phenotypes of the fruit fly and discuss how these results recommend several human genes as candidates to study and validate genetic variants associated with human diseases. We also consider that a wider implementation of this evolutionist exploratory approach as a standard for the medicine of genetic disorders would allow this particular field of human health to advance at a faster pace.
Collapse
Affiliation(s)
- Alexandru Al. Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest and Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
9
|
Veldman A, Kiewiet MBG, Heiner-Fokkema MR, Nelen MR, Sinke RJ, Sikkema-Raddatz B, Voorhoeve E, Westra D, Dollé MET, Schielen PCJI, van Spronsen FJ. Towards Next-Generation Sequencing (NGS)-Based Newborn Screening: A Technical Study to Prepare for the Challenges Ahead. Int J Neonatal Screen 2022; 8:17. [PMID: 35323196 PMCID: PMC8949100 DOI: 10.3390/ijns8010017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Newborn screening (NBS) aims to identify neonates with severe conditions for whom immediate treatment is required. Currently, a biochemistry-first approach is used to identify these disorders, which are predominantly inherited meta1bolic disorders (IMD). Next-generation sequencing (NGS) is expected to have some advantages over the current approach, for example the ability to detect IMDs that meet all screening criteria but lack an identifiable biochemical footprint. We have now designed a technical study to explore the use of NGS techniques as a first-tier approach in NBS. Here, we describe the aim and set-up of the NGS-first for the NBS (NGSf4NBS) project, which will proceed in three steps. In Step 1, we will identify IMDs eligible for NGS-first testing, based on treatability. In Step 2, we will investigate the feasibility, limitations and comparability of different technical NGS approaches and analysis workflows for NBS, eventually aiming to develop a rapid NGS-based workflow. Finally, in Step 3, we will prepare for the incorporation of this workflow into the existing Dutch NBS program and propose a protocol for referral of a child after a positive NGS test result. The results of this study will be the basis for an additional analytical route within NBS that will be further studied for its applicability within the NBS program, e.g., regarding the ethical, legal, financial and social implications.
Collapse
Affiliation(s)
- Abigail Veldman
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Mensiena B. G. Kiewiet
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (R.J.S.); (B.S.-R.)
| | - Margaretha Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Marcel R. Nelen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (M.R.N.); (D.W.)
| | - Richard J. Sinke
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (R.J.S.); (B.S.-R.)
| | - Birgit Sikkema-Raddatz
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (R.J.S.); (B.S.-R.)
| | - Els Voorhoeve
- Centre for Health Protection, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands; (E.V.); (M.E.T.D.)
| | - Dineke Westra
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (M.R.N.); (D.W.)
| | - Martijn E. T. Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands; (E.V.); (M.E.T.D.)
| | - Peter C. J. I. Schielen
- Centre for Population Screening, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands;
| | - Francjan J. van Spronsen
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|