1
|
Li P, Zhu X, Liu M, Wang Y, Huang C, Sun J, Tian S, Li Y, Qiao Y, Yang J, Cao S, Cong C, Zhao L, Wang M, Su J, Tian D. Impact of gene-environment interactions on atrial fibrillation and cardiac structure. Sci Rep 2025; 15:16893. [PMID: 40374717 PMCID: PMC12081741 DOI: 10.1038/s41598-025-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 05/02/2025] [Indexed: 05/17/2025] Open
Abstract
Environmental pollution is a major burden of cardiovascular disease. The aim of the study was to investigate the interactions between combined environmental factors and genetic susceptibility on atrial fibrillation (AF) and cardiac structures. The study included 374,495 participants from the UK Biobank, utilizing genetic data and environmental variables (including air pollution, noise, greenspace and water quality). Polygenic risk score (PRS) was calculated to estimate individual genetic risk. Cox proportional hazard model was applied to estimate the impact of exposure factors on the risk of AF occurrence. The mediation analysis was applied to assess the relationship among environmental scores, AF and cardiac structures. Population attributable fraction (PAF) was employed to assess potential influence of mitigating unfavorable environment characteristics on AF. The results showed that the highest group of four domain scores exhibited 3.38-16.83% higher AF risk than the lowest. Individuals with higher scores in four domains and high PRS had hazard ratio (95%CI) of 2.76 (2.62, 2.91), 2.61 (2.47, 2.75), 2.86 (2.71, 3.02) and 2.84 (2.66, 3.02). Environmental factors could indirectly affect cardiac structures through AF. Up to 7.37% of AF cases could be preventable through environmental interventions. Our findings pointed that gene-environment interaction can increase AF risk, which further affect cardiac structures.
Collapse
Affiliation(s)
- Panlong Li
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xirui Zhu
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Min Liu
- Department of Hypertension, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Yanfeng Wang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Chun Huang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Junwei Sun
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shan Tian
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuna Li
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Qiao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junting Yang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Cao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaohua Cong
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China.
- Laboratory of Brain Science and Brain-Like Intelligence Technology, Biomedical Research Institute, Henan Academy of Science, Henan, China.
| | - Jingjing Su
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dandan Tian
- Department of Hypertension, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Yao Y, Dai T, Wang X, Zhou J, Wang L, Cai X, Lao L, Fang L, Xu T, Guo P, Deng H. Lower risk of atrial fibrillation associated with visible greenness within community life circle: Findings from a population-based study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118106. [PMID: 40157330 DOI: 10.1016/j.ecoenv.2025.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Existing studies have found the health implications of greenness on cardiovascular health, but largely focus on greenspace rather than visible greenness. We aimed to investigate the relationship between visible greenness within the community life circle and atrial fibrillation (AF). Our study included 11,539 permanent residents from a large prospective cohort in a megacity of southern China from 2015 to 2017. We generated 15-minute walking isochrone for each study participant as the community life circle and combined it with green view index (GVI) to estimate corresponding exposure to residential greenness. GVI was calculated utilizing street view images and a fully convolutional neural network tailored for evaluating urban environments. We combined logistic regression model and a doubly-robust approach to explore the relationship between GVI and AF. Mediation analyses were used to assess the mediating role of air pollution, body mass index (BMI) and exercise time on the relationship between GVI and AF. We found that each IQR increase in GVI exposure was associated with a 22.6 % (95 % CI: 8.7 %, 34.1 %) reduction in the risk of AF. The mediation effect of PM1 on the relationship between GVI and AF was also identified. Higher visible greenness exposure within community life circle was associated with reduced risk of AF among urban residents. Visible greenness within urban community areas should be emphasized as a solution to promote cardiovascular health.
Collapse
Affiliation(s)
- Yunchong Yao
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Tingting Dai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Xu Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Jiayi Zhou
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Lingxi Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Xiaoyan Cai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Lixian Lao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou 510080, China
| | - Ling Fang
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Ting Xu
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
| | - Pi Guo
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou 515041, China.
| | - Hai Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou 510080, China.
| |
Collapse
|
3
|
Kurasz A, Lip GYH, Dobrzycki S, Kuźma Ł. A Breath of Trouble: Unraveling the Impact of Air Pollution on Atrial Fibrillation. J Clin Med 2024; 13:7400. [PMID: 39685856 DOI: 10.3390/jcm13237400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Air pollution is a pervasive global challenge with profound implications for public health. This review explores the intricate relationship between air pollution and atrial fibrillation (AF), a prevalent cardiac arrhythmia associated with significant morbidity and mortality. Drawing on a comprehensive analysis of the existing literature, this review synthesizes current evidence linking various air pollutants, including particulate matter, nitrogen dioxide, ozone, and carbon monoxide, to the development and exacerbation of AF. The review delves into the role of air pollution as a global health issue alongside its specific sources, such as traffic-related emissions and industrial pollutants. It also examines the underlying mechanisms through which air pollution may contribute to the pathogenesis of AF, encompassing oxidative stress, inflammation, and autonomic nervous system dysregulation. In addition, it explores the impact of individual pollutants and the results of meta-analyses. It considers the results of vulnerable populations, including sex differences between the individuals and those with pre-existing cardiovascular conditions, who may be disproportionately affected. We also address critical research gaps in this area. Overall, air pollution has been increasingly recognized as a significant trigger for AF, with evidence linking exposure to particulate matter and gaseous pollutants to an increased incidence in short- as well as long-term exposure, highlighting the need for targeted public health interventions and further research to mitigate its cardiovascular impact.
Collapse
Affiliation(s)
- Anna Kurasz
- Department of Invasive Cardiology, Medical University of Bialystok, 15-540 Bialystok, Poland
| | - Gregory Y H Lip
- Department of Cardiology, Lipidology and Internal Medicine, Medical University of Bialystok, 15-540 Bialystok, Poland
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool L3 3AF, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Sławomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Bialystok, 15-540 Bialystok, Poland
| | - Łukasz Kuźma
- Department of Invasive Cardiology, Medical University of Bialystok, 15-540 Bialystok, Poland
| |
Collapse
|
4
|
Zhang J, Luo L, Chen G, Ai B, Wu G, Gao Y, Lip GYH, Lin H, Chen Y. Associations of ambient air pollution with incidence and dynamic progression of atrial fibrillation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175710. [PMID: 39181259 DOI: 10.1016/j.scitotenv.2024.175710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The influence of air pollution on dynamic changes in clinical state from healthy to atrial fibrillation (AF), further AF-related complications and ultimately, death are unclear. We aimed to investigate the relationships between air pollution and the occurrence and progression trajectories of AF. We retrieved 442,150 participants free of heart failure (HF), myocardial infarction (MI), stroke and dementia at baseline from UK Biobank. Exposures to air pollution for each transition stage were estimated at the geocoded residential address of each participant using the bilinear interpolation approach. The outcomes were incident AF, complications, and death. Multi-stage models were used to evaluate the associations between air pollution and dynamic progression of AF. Over a 12.6-year median follow-up, a total of 21,670 incident AF patients were identified, of whom, 4103 developed complications and 1331 died. PM2.5, PM10, NOx and NO2 were differentially positively associated, while O3 was negatively associated with risks of progression trajectories of AF. PM2.5 exposure was significantly associated with an increased risk of progression. The associations of PM2.5, PM10, NOx, and NO2 on incident AF were generally more pronounced compared to other transitions. The cumulative transition probabilities were generally higher in individuals with higher exposure levels of PM2.5, PM10, NOx, and NO2 and lower exposure to O3. Air pollution could potentially have a role in increasing the risk of both the occurrence and progression of AF, emphasizing the significance of air pollution interventions in both the primary prevention of AF and the management of AF-related outcomes.
Collapse
Affiliation(s)
- Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Linna Luo
- Department of Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Baozhuo Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Gan Wu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yanhui Gao
- Department of Medical Statistics, School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Muszyński P, Pawluczuk E, Januszko T, Kruszyńska J, Duzinkiewicz M, Kurasz A, Bonda TA, Tomaszuk-Kazberuk A, Dobrzycki S, Kożuch M. Exploring the Relationship between Acute Coronary Syndrome, Lower Respiratory Tract Infections, and Atmospheric Pollution. J Clin Med 2024; 13:5037. [PMID: 39274250 PMCID: PMC11396614 DOI: 10.3390/jcm13175037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Respiratory infections were found to be connected with the incidence of acute coronary syndrome (ACS). The proposed pathway of this connection includes inflammation, oxidative stress, pro-coagulation, and atherosclerotic plaque destabilization. This can cause rapture and thrombus formation, leading to ACS. Our study aimed to assess the risk factors for coronary artery thrombosis as a manifestation of ACS and for lower respiratory tract infections (LRTIs) in patients with ACS. Methods: The study included 876 patients with ACS from January 2014 to December 2018. Both the clinical data and air pollution data were analyzed. Statistical tests used for analysis included Student's t-test, the Mann-Whitney U-test, the Chi-squared test, and the odds ratio Altman calculation. Results: LRTIs were found in 9.13% patients with ACS. The patients with LRTI had a higher risk of coronary artery thrombosis (OR: 2.4903; CI: 1.3483 to 4.5996). Moreover, they had increased values of inflammatory markers, were older, had a lower BMI, and a higher rate of atrial fibrillation. The average atmospheric aerosols with a maximum diameter of 2.5 μm (PM2.5 concentration) from three consecutive days before hospitalization for ACS were higher in patients with LRTI. Conclusions: The occurrence of coronary artery thrombosis was higher among the patients with LRTI during ACS. PM2.5 exposition was higher in the three consecutive days before hospitalization in patients with LRTI during ACS.
Collapse
Affiliation(s)
- Paweł Muszyński
- Department of Invasive Cardiology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland
- Department of General and Experimental Pathology, Medical University of Bialystok, Mickiewicza 2C, 15-230 Bialystok, Poland
- Department of Cardiology, Lipidology and Internal Diseases, Medical University of Bialystok, Żurawia 14, 15-569 Bialystok, Poland
| | - Elżbieta Pawluczuk
- Department of General and Experimental Pathology, Medical University of Bialystok, Mickiewicza 2C, 15-230 Bialystok, Poland
| | - Tomasz Januszko
- Department of Invasive Cardiology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Joanna Kruszyńska
- Department of Invasive Cardiology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Małgorzata Duzinkiewicz
- Department of Invasive Cardiology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Anna Kurasz
- Department of Invasive Cardiology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Tomasz A Bonda
- Department of General and Experimental Pathology, Medical University of Bialystok, Mickiewicza 2C, 15-230 Bialystok, Poland
| | - Anna Tomaszuk-Kazberuk
- Department of Cardiology, Lipidology and Internal Diseases, Medical University of Bialystok, Żurawia 14, 15-569 Bialystok, Poland
| | - Sławomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Marcin Kożuch
- Department of Invasive Cardiology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
6
|
Wass SY, Hahad O, Asad Z, Li S, Chung MK, Benjamin EJ, Nasir K, Rajagopalan S, Al-Kindi SG. Environmental Exposome and Atrial Fibrillation: Emerging Evidence and Future Directions. Circ Res 2024; 134:1029-1045. [PMID: 38603473 PMCID: PMC11060886 DOI: 10.1161/circresaha.123.323477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
There has been increased awareness of the linkage between environmental exposures and cardiovascular health and disease. Atrial fibrillation is the most common sustained cardiac arrhythmia, affecting millions of people worldwide and contributing to substantial morbidity and mortality. Although numerous studies have explored the role of genetic and lifestyle factors in the development and progression of atrial fibrillation, the potential impact of environmental determinants on this prevalent condition has received comparatively less attention. This review aims to provide a comprehensive overview of the current evidence on environmental determinants of atrial fibrillation, encompassing factors such as air pollution, temperature, humidity, and other meteorologic conditions, noise pollution, greenspace, and the social environment. We discuss the existing evidence from epidemiological and mechanistic studies, critically evaluating the strengths and limitations of these investigations and the potential underlying biological mechanisms through which environmental exposures may affect atrial fibrillation risk. Furthermore, we address the potential implications of these findings for public health and clinical practice and identify knowledge gaps and future research directions in this emerging field.
Collapse
Affiliation(s)
- Sojin Youn Wass
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, OH (M.K.C., S.Y.W.)
| | - Omar Hahad
- Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany (O.H.)
| | - Zain Asad
- Division of Cardiovascular Medicine, University of Oklahoma Medical Center, Oklahoma City (Z.A.)
| | - Shuo Li
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH (S.L.)
| | - Mina K Chung
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, OH (M.K.C., S.Y.W.)
| | - Emelia J Benjamin
- Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine and Department of Epidemiology, Boston University School of Public Health, MA (E.J.B.)
| | - Khurram Nasir
- Cardiovascular Prevention and Wellness, DeBakey Heart and Vascular Center, Houston Methodist, TX (K.N., S.G.A.-K.)
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (S.R.)
- Case Western Reserve University School of Medicine, Cleveland, OH (S.R.)
| | - Sadeer G Al-Kindi
- Cardiovascular Prevention and Wellness, DeBakey Heart and Vascular Center, Houston Methodist, TX (K.N., S.G.A.-K.)
| |
Collapse
|
7
|
Wu S, Guo J, Chen X, Wang J, Zhao G, Ma S, Hao T, Tan J, Li Y. Rapid weather changes are associated with daily hospital visitors for atrial fibrillation accompanied by abnormal ECG repolarization: a case-crossover study. Eur J Med Res 2024; 29:62. [PMID: 38245805 PMCID: PMC10799445 DOI: 10.1186/s40001-023-01632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/30/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is highly prevalent in the population, yet the factors contributing to AF events in susceptible individuals remain partially understood. The potential relationship between meteorological factors and AF, particularly with abnormal electrocardiograph (ECG) repolarization, has not been adequately studied. This case-crossover study aims to investigate the association between meteorological factors and daily hospital visits for AF with abnormal ECG repolarization in Shanghai, China. METHODS The study cohort comprised 10,325 patients with ECG-confirmed AF who sought treatment at Shanghai Sixth People's Hospital between 2015 and 2018. Meteorological and air pollutant concentration data were matched with the patient records. Using a case-crossover design, we analyzed the association between meteorological factors and the daily count of hospital visitors for AF with abnormal ECG repolarization at our AF center. Lag analysis models were applied to examine the temporal relationship between meteorological factors and AF events. RESULTS The analysis revealed statistically significant associations between AF occurrence and specific meteorological factors. AF events were significantly associated with average atmospheric pressure (lag 0 day, OR 0.9901, 95% CI 0.9825-0.9977, P < 0.05), average temperature (lag 1 day, OR 0.9890, 95% CI 0.9789-0.9992, P < 0.05), daily pressure range (lag 7 days, OR 1.0195, 95% CI 1.0079-1.0312, P < 0.01), and daily temperature range (lag 5 days, OR 1.0208, 95% CI 1.0087-1.0331, P < 0.01). Moreover, a significant correlation was observed between daily pressure range and daily temperature range with AF patients, particularly those with abnormal ECG repolarization, as evident in the case-crossover analysis. CONCLUSION This study highlights a significant correlation between meteorological factors and daily hospital visits for AF accompanied by abnormal ECG repolarization in Shanghai, China. In addition, AF patients with abnormal ECG repolarization were found to be more vulnerable to rapid daily changes in pressure and temperature compared to AF patients without such repolarization abnormalities.
Collapse
Affiliation(s)
- Shanmei Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Jingyi Guo
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xin Chen
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Jie Wang
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Gang Zhao
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Shixin Ma
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Tianzheng Hao
- Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jianguo Tan
- Shanghai Meteorological IT Support Center, Shanghai, People's Republic of China.
- Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing, People's Republic of China.
| | - Yongguang Li
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
8
|
Zheng G, Xia H, Shi H, Zheng D, Wang X, Ai B, Tian F, Lin H. Effect modification of dietary diversity on the association of air pollution with incidence, complications, and mortality of type 2 diabetes: Results from a large prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168314. [PMID: 37926247 DOI: 10.1016/j.scitotenv.2023.168314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND It remains unknown whether the dietary diversity score (DDS) could modify the association of long-term exposure to individual air pollutants and the mixture of various pollutants with the incidence, complications, and mortality of type 2 diabetes (T2D). METHODS We included 162,579 participants from the UK Biobank who had ≥ one 24-h dietary assessment and were free of diabetes or diabetes complications before their last response date of the 24-h dietary assessment. Exposure to benzene, NOx, NO2, SO2, PM10, and PM2.5 was estimated at each participant's residential location using a bilinear interpolation algorithm based on air dispersion models on a 1 km × 1 km grid. The DDS was calculated based on repeated 24-h dietary assessments. The outcomes were the incidence, complications, and mortality of T2D. Associations of individual pollutants and multiple pollutants mixtures with outcomes were assessed using Cox proportional hazards regression models and the quantile g-computation approach, respectively. We further stratified these analyses by DDS. RESULTS During a median of 10.1 years of follow-up, 2978 participants developed incident T2D, 1181 developed T2D complications, and 242 died due to T2D. Long-term single-pollutant and multi-pollutant exposure were associated with elevated risk of incidence, complications, and mortality of T2D. For example, for incident T2D, the hazard ratio and 95 % confidence interval for each quantile increase were 1.155 (1.095, 1.215) for the air pollution mixture. We observed significant interactions between air pollution (benzene, NOx, NO2, PM10, PM2.5, and the air pollution mixture) and DDS (P-interaction <0.05), with the corresponding associations being significantly weaker in adults with high DDS than in those with low DDS. CONCLUSION Higher dietary diversity may attenuate the harmful impacts of air pollution on T2D-related outcomes. A higher diversity diet could be used to prevent the onset and progression of T2D induced by long-term exposure to various air pollutants.
Collapse
Affiliation(s)
- Guzhengyue Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong 510080, PR China
| | - Hui Xia
- Center for Health Care, Longhua District, Shenzhen 518109, PR China
| | - Hui Shi
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong 510080, PR China
| | - Dashan Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong 510080, PR China
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong 510080, PR China
| | - Baozhuo Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong 510080, PR China
| | - Fei Tian
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong 510080, PR China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, 2nd Yat-sen Road, Yuexiu District, Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
9
|
Li B, Wen F, Liu K, Xie Y, Zhang F, Li P, Sun Y, Qu A, Yang X, Zhang L. The mediation effect of lipids, blood pressure and BMI between air pollutant mixture and atherosclerotic cardiovascular disease: The CHCN-BTH cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115491. [PMID: 37729805 DOI: 10.1016/j.ecoenv.2023.115491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND The combine effect of air pollutant mixture on atherosclerotic cardiovascular disease (ASCVD) remain undefined. This study aims to explore the association between long-term exposure of air pollutants and ASCVD, focusing on the mediating role of lipids, blood pressure and BMI. METHODS This study was based on the CHCN-BTH cohort study. The annual concentrations of air pollutants and PM2.5 constituents were sourced from in the Tracking Air Pollution in China (TAP) and ChinaHighAirPollutants (CHAP) datasets from 2014 to 2019. A Cox mixed-effects model was used to investigate the associations between long-term exposure of air pollutants and ASCVD. The combined impact of the air pollutant mixture was assessed using Quantile g-Computation. Stratified, sensitivity, and mediation analyses were conducted. RESULTS A total of 27,134 participants aged 18-80 were recruited in the present study. We found that each IQR increase of PM2.5, PM1, NO2, O3, BC, SO42-, and OM were significantly associated with the incidence of ASCVD, the hazard ratios (HRs) and 95 % confidence interval (CI) were 1.55 (1.35, 1.78), 1.46 (1.27, 1.67), 1.30 (1.21, 1.39), 1.66 (1.41,1.95), 2.14 (1.63, 2.83), 1.65 (1.25, 2.17) and 1.92(1.52, 2.45), respectively. The combined effect of air pollutant mixture on ASCVD was 1.79 (1.46, 2.20), PM2.5 contributed 83.3 % to this combined effect. Mediation effect models suggested that air pollutants and ASCVD might be mediated through SBP, DBP, HDL-C, LDL-C, hsCRP and BMI (mediation proportion range from 1.3 % to 26.1 %), Notably, HDL-C played mediation roles of 11.3 % (7.0 %, 18.4), 26.1 % (17.7 %, 38.1 %) and 25.4 % (15.4, 47.7 %) in the effects of long-term exposure to PM2.5, PM1 and OM on ASCVD, respectively. CONCLUSIONS Long-term, high-level air pollutant exposure was significantly associated with an elevated risk of ASCVD, particularly for PM2.5. Blood pressure, lipids and BMI, especially HDL-C, may mediate the effects of air pollutants exposure on ASCVD.
Collapse
Affiliation(s)
- Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Fuyuan Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yunyi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Fengxu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Pandi Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Aibin Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xiaojun Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| |
Collapse
|
10
|
Kuntic M, Kuntic I, Hahad O, Lelieveld J, Münzel T, Daiber A. Impact of air pollution on cardiovascular aging. Mech Ageing Dev 2023; 214:111857. [PMID: 37611809 DOI: 10.1016/j.mad.2023.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The world population is aging rapidly, and by some estimates, the number of people older than 60 will double in the next 30 years. With the increase in life expectancy, adverse effects of environmental exposures start playing a more prominent role in human health. Air pollution is now widely considered the most detrimental of all environmental risk factors, with some studies estimating that almost 20% of all deaths globally could be attributed to poor air quality. Cardiovascular diseases are the leading cause of death worldwide and will continue to account for the most significant percentage of non-communicable disease burden. Cardiovascular aging with defined pathomechanisms is a major trigger of cardiovascular disease in old age. Effects of environmental risk factors on cardiovascular aging should be considered in order to increase the health span and reduce the burden of cardiovascular disease in older populations. In this review, we explore the effects of air pollution on cardiovascular aging, from the molecular mechanisms to cardiovascular manifestations of aging and, finally, the age-related cardiovascular outcomes. We also explore the distinction between the effects of air pollution on healthy aging and disease progression. Future efforts should focus on extending the health span rather than the lifespan.
Collapse
Affiliation(s)
- Marin Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Ivana Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Omar Hahad
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Thomas Münzel
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|