1
|
Elandaloussi Y, Dufrenne O, Lefebvre A, Houenou J, Senova S, Laidi C. Cerebellar Neuromodulation in Autism Spectrum Disorders and Social Cognition: Insights from Animal and Human Studies. CEREBELLUM (LONDON, ENGLAND) 2025; 24:46. [PMID: 39937336 DOI: 10.1007/s12311-025-01801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by social atypicalities and repetitive behaviors. Growing evidence suggests that alterations in brain networks may contribute to ASD symptoms. The cerebellum, with its widespread connections to the cortex, has emerged as a potential key player in ASD. Non-invasive neuromodulation techniques, such as transcranial direct current stimulation (tDCS) or repetitive transcranial magnetic stimulation (rTMS) offer a promising avenue for modulating brain activity and potentially alleviating ASD symptoms. In addition, preclinical studies in rodents further emphasize the therapeutic effect of cerebellar stimulation to target autism-related symptoms. This article reviews both clinical and preclinical studies aiming to modulate cerebellar circuits to improve symptoms of ASD. We found ten relevant studies assessing the effect of cerebellar neuromodulation in human and preclinical models. Posterior cerebellar tDCS represented the most frequent neuromodulation method and suggested that cerebellar tDCS can lead to improvements in symptoms of ASD and restore cerebellar connectivity in individuals with ASD. In neurotypical participants, there is evidence that cerebellar tDCS can enhance social cognitive abilities. These results are in line with preclinical studies, suggesting that chemogenetic stimulation can modulate cerebellar circuits involved in ASD and improve related behaviors. Further research is needed to establish standardized protocols, assess long-term effects, and investigate the underlying mechanisms of cerebellar stimulation. We examine research questions that need to be addressed before launching large scale randomized clinical trials.
Collapse
Affiliation(s)
- Yannis Elandaloussi
- Child and Adolescent Psychiatry Department, Robert Debre Hospital, APHP, 48 Boulevard Serrurier, Paris, France.
- Université Paris Cité, Paris, France.
- CEA, Université Paris-Saclay, Neurospin, Gif-sur-Yvette, France.
| | - Océane Dufrenne
- Université Paris Cité, Paris, France
- Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Hôpitaux Universitaires Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT, AP-HP, Créteil, F-94010, France
| | - Aline Lefebvre
- CEA, Université Paris-Saclay, Neurospin, Gif-sur-Yvette, France
- Université Paris Saclay, Le Kremlin-Bicêtre, France
- Fondation Vallée, Hospital of Child and Adolescent Psychiatry, Gentilly, France
| | - Josselin Houenou
- CEA, Université Paris-Saclay, Neurospin, Gif-sur-Yvette, France
- Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Hôpitaux Universitaires Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT, AP-HP, Créteil, F-94010, France
- Fondation FondaMental, Créteil, F-94010, France
- IMRB, Translational Neuro-Psychiatry, Univ Paris Est Créteil, INSERM U955, Créteil, F-94010, France
| | - Suhan Senova
- IMRB, Translational Neuro-Psychiatry, Univ Paris Est Créteil, INSERM U955, Créteil, F-94010, France
- Service de Neurochirurgie, Hôpitaux Universitaires Henri Mondor, Fédération Hospitalo- Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT, AP-HP, Créteil, F-94010, France
| | - Charles Laidi
- CEA, Université Paris-Saclay, Neurospin, Gif-sur-Yvette, France
- Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Hôpitaux Universitaires Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT, AP-HP, Créteil, F-94010, France
- Fondation FondaMental, Créteil, F-94010, France
- IMRB, Translational Neuro-Psychiatry, Univ Paris Est Créteil, INSERM U955, Créteil, F-94010, France
| |
Collapse
|
2
|
Firouzi M, Baetens K, Duta C, Baeken C, Van Overwalle F, Swinnen E, Deroost N. The cerebellum is involved in implicit motor sequence learning. Front Neurosci 2024; 18:1433867. [PMID: 39712223 PMCID: PMC11659296 DOI: 10.3389/fnins.2024.1433867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Background Implicit motor sequence learning (IMSL) is a cognitive function that allows us to execute multiple movements in a specific sequential order and plays a crucial role in our daily functional activities. Although the role of the basal ganglia network in IMSL is well-established, the exact involvement of the cerebellar network is less clear. Aim Here, we aimed to address this issue by investigating the effects of cerebellar transcranial direct-current stimulation (tDCS) on IMSL. Methods In this sham-controlled, crossover study in 45 healthy young adults, we used mixed-effects models to analyze sequence-specific (primary outcome) and general learning effects (secondary outcome) in the acquisition (during tDCS), short- (five minutes post-tDCS) and long-term consolidation (one week post-tDCS) phases of IMSL, as measured by the serial reaction time (SRT) task. Results Analyses based on response times (RTs) revealed that anodal tDCS over the cerebellum significantly increased sequence-specific learning during acquisition, compared to sham (anodal: M = 38.24 ms, sham: M = 26.78 ms, p = 0.032); did not affect general learning; and significantly slowed overall RTs (anodal: M = 362.03 ms, sham: M = 356.37 ms, p = 0.049). Accuracy-based analyses revealed that anodal tDCS reduced the probability of correct responses occurring in random trials versus sequential trials by 1.17%, p = 0.009, whereas sham tDCS had no effect, p = 0.999. Conclusion Our finding of enhanced sequence-specific learning, but not general learning, suggests that the cerebellar network not only plays a role in error correction processes, but also serves a sequence-specific function within the integrated motor learning network that connects the basal ganglia and cerebellum.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, Jette, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Catalina Duta
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Department of Psychiatry, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), University Hospital Brussel (UZ Brussel), Jette, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, Jette, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
3
|
Lapenta OM, Rêgo GG, Boggio PS. Transcranial electrical stimulation for procedural learning and rehabilitation. Neurobiol Learn Mem 2024; 213:107958. [PMID: 38971460 DOI: 10.1016/j.nlm.2024.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Procedural learning is the acquisition of motor and non-motor skills through a gradual process that increases with practice. Impairments in procedural learning have been consistently demonstrated in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Considering that noninvasive brain stimulation modulates brain activity and boosts neuroplastic mechanisms, we reviewed the effects of coupling transcranial direct current stimulation (tDCS) with training methods for motor and non-motor procedural learning to explore tDCS potential use as a tool for enhancing implicit learning in healthy and clinical populations. The review covers tDCS effects over i. motor procedural learning, from basic to complex activities; ii. non-motor procedural learning; iii. procedural rehabilitation in several clinical populations. We conclude that targeting the primary motor cortex and prefrontal areas seems the most promising for motor and non-motor procedural learning, respectively. For procedural rehabilitation, the use of tDCS is yet at an early stage but some effectiveness has been reported for implicit motor and memory learning. Still, systematic comparisons of stimulation parameters and target areas are recommended for maximising the effectiveness of tDCS and its robustness for procedural rehabilitation.
Collapse
Affiliation(s)
- Olivia Morgan Lapenta
- Psychological Neuroscience Laboratory, Psychology Research Center, School of Psychology, University of Minho - Rua da Universidade, 4710-057 Braga, Portugal.
| | - Gabriel Gaudencio Rêgo
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University - Rua Piauí, 181, 01241-001 São Paulo, Brazil; National Institute of Science and Technology on Social and Affective Neuroscience (INCT-SANI), São Paulo, Brazil
| | - Paulo Sérgio Boggio
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University - Rua Piauí, 181, 01241-001 São Paulo, Brazil; National Institute of Science and Technology on Social and Affective Neuroscience (INCT-SANI), São Paulo, Brazil
| |
Collapse
|
4
|
Ciricugno A, Oldrati V, Cattaneo Z, Leggio M, Urgesi C, Olivito G. Cerebellar Neurostimulation for Boosting Social and Affective Functions: Implications for the Rehabilitation of Hereditary Ataxia Patients. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1651-1677. [PMID: 38270782 PMCID: PMC11269351 DOI: 10.1007/s12311-023-01652-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Beyond motor deficits, spinocerebellar ataxia (SCA) patients also suffer cognitive decline and show socio-affective difficulties, negatively impacting on their social functioning. The possibility to modulate cerebello-cerebral networks involved in social cognition through cerebellar neurostimulation has opened up potential therapeutic applications for ameliorating social and affective difficulties. The present review offers an overview of the research on cerebellar neurostimulation for the modulation of socio-affective functions in both healthy individuals and different clinical populations, published in the time period 2000-2022. A total of 25 records reporting either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) studies were found. The investigated clinical populations comprised different pathological conditions, including but not limited to SCA syndromes. The reviewed evidence supports that cerebellar neurostimulation is effective in improving social abilities in healthy individuals and reducing social and affective symptoms in different neurological and psychiatric populations associated with cerebellar damage or with impairments in functions that involve the cerebellum. These findings encourage to further explore the rehabilitative effects of cerebellar neurostimulation on socio-affective deficits experienced by patients with cerebellar abnormalities, as SCA patients. Nevertheless, conclusions remain tentative at this stage due to the heterogeneity characterizing stimulation protocols, study methodologies and patients' samples.
Collapse
Affiliation(s)
- Andrea Ciricugno
- IRCCS Mondino Foundation, 27100, Pavia, Italy.
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy.
| | - Viola Oldrati
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
| | - Zaira Cattaneo
- IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Human and Social Sciences, University of Bergamo, 24129, Bergamo, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100, Udine, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| |
Collapse
|
5
|
Haihambo N, Li M, Ma Q, Baeken C, Deroost N, Baetens K, Van Overwalle F. Exciting the social butterfly: Anodal cerebellar transcranial direct current stimulation modulates neural activation during predictive social mentalizing. Int J Clin Health Psychol 2024; 24:100480. [PMID: 39055855 PMCID: PMC11269293 DOI: 10.1016/j.ijchp.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) has emerged as a promising tool for enhancing social cognition. The posterior cerebellum, which is part of the mentalizing network, has been implicated in social processes. In our combined tDCS-fMRI study, we investigated the effects of offline anodal cerebellar tDCS on activation in the cerebellum during social action prediction. Forty-one participants were randomly assigned to receive either anodal (2 mA) or sham (0 mA) stimulation over the midline of the posterior cerebellum for 20 min. Twenty minutes post stimulation, participants underwent a functional MRI scan to complete a social action prediction task, during which they had to correctly order randomly presented sentences that described either actions of social agents (based on their personality traits) or events of objects (based on their characteristics). As hypothesized, our results revealed that participants who received anodal cerebellar tDCS exhibited increased activation in the posterior cerebellar Crus 2 and lobule IX, and in key cerebral mentalizing areas, including the medial prefrontal cortex, temporo-parietal junction, and precuneus. Contrary to our hypotheses, participants who received anodal stimulation demonstrated faster responses to non-social objects compared to social agents, while sham participants showed no significant differences. We did not find a significant relationship between electric field magnitude, neural activation and behavioral outcomes. These findings suggest that tDCS targeting the posterior cerebellum selectively enhances activation in social mentalizing areas, while only facilitating behavioral performance of non-social material, perhaps because of a ceiling effect due to familiarity with social processing.
Collapse
Affiliation(s)
- Naem Haihambo
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
- Centre for Human Brain Health, University of Birmingham, Bochum, Germany
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Meijia Li
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
- Language Pathology and Brain Science MEG Lab, School of Communication Sciences, Beijing Language and Culture University, Beijing, China
| | - Qianying Ma
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent Experimental, Ghent University, Ghent 9000, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel, Brussels 1090, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Chris Baeken
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Natacha Deroost
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Kris Baetens
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
6
|
Malatesta G, D'Anselmo A, Prete G, Lucafò C, Faieta L, Tommasi L. The Predictive Role of the Posterior Cerebellum in the Processing of Dynamic Emotions. CEREBELLUM (LONDON, ENGLAND) 2024; 23:545-553. [PMID: 37285048 PMCID: PMC10951036 DOI: 10.1007/s12311-023-01574-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
Recent studies have bolstered the important role of the cerebellum in high-level socio-affective functions. In particular, neuroscientific evidence shows that the posterior cerebellum is involved in social cognition and emotion processing, presumably through its involvement in temporal processing and in predicting the outcomes of social sequences. We used cerebellar transcranial random noise stimulation (ctRNS) targeting the posterior cerebellum to affect the performance of 32 healthy participants during an emotion discrimination task, including both static and dynamic facial expressions (i.e., transitioning from a static neutral image to a happy/sad emotion). ctRNS, compared to the sham condition, significantly reduced the participants' accuracy to discriminate static sad facial expressions, but it increased participants' accuracy to discriminate dynamic sad facial expressions. No effects emerged with happy faces. These findings may suggest the existence of two different circuits in the posterior cerebellum for the processing of negative emotional stimuli: a first-time-independent mechanism which can be selectively disrupted by ctRNS, and a second time-dependent mechanism of predictive "sequence detection" which can be selectively enhanced by ctRNS. This latter mechanism might be included among the cerebellar operational models constantly engaged in the rapid adjustment of social predictions based on dynamic behavioral information inherent to others' actions. We speculate that it might be one of the basic principles underlying the understanding of other individuals' social and emotional behaviors during interactions.
Collapse
Affiliation(s)
- Gianluca Malatesta
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Anita D'Anselmo
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giulia Prete
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Chiara Lucafò
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Letizia Faieta
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
7
|
Oldrati V, Butti N, Ferrari E, Cattaneo Z, Urgesi C, Finisguerra A. Excitatory cerebellar transcranial direct current stimulation boosts the leverage of prior knowledge for predicting actions. Soc Cogn Affect Neurosci 2024; 19:nsae019. [PMID: 38537123 PMCID: PMC11227954 DOI: 10.1093/scan/nsae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 07/09/2024] Open
Abstract
The cerebellum causally supports social processing by generating internal models of social events based on statistical learning of behavioral regularities. However, whether the cerebellum is only involved in forming or also in using internal models for the prediction of forthcoming actions is still unclear. We used cerebellar transcranial Direct Current Stimulation (ctDCS) to modulate the performance of healthy adults in using previously learned expectations in an action prediction task. In a first learning phase of this task, participants were exposed to different levels of associations between specific actions and contextual elements, to induce the formation of either strongly or moderately informative expectations. In a following testing phase, which assessed the use of these expectations for predicting ambiguous (i.e. temporally occluded) actions, we delivered ctDCS. Results showed that anodic, compared to sham, ctDCS boosted the prediction of actions embedded in moderately, but not strongly, informative contexts. Since ctDCS was delivered during the testing phase, that is after expectations were established, our findings suggest that the cerebellum is causally involved in using internal models (and not just in generating them). This encourages the exploration of the clinical effects of ctDCS to compensate poor use of predictive internal models for social perception.
Collapse
Affiliation(s)
- Viola Oldrati
- Scientific Institute, IRCCS E. Medea, Bosisio Parini (LC) 23842, Italy
| | - Niccolò Butti
- Scientific Institute, IRCCS E. Medea, Bosisio Parini (LC) 23842, Italy
- PhD Program in Neural and Cognitive Sciences, Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | | | - Zaira Cattaneo
- Department of Human and Social Sciences, University of Bergamo, Bergamo 24129, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, Bosisio Parini (LC) 23842, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine 33100, Italy
| | | |
Collapse
|
8
|
Urbini N, Siciliano L, Olivito G, Leggio M. Unveiling the role of cerebellar alterations in the autonomic nervous system: a systematic review of autonomic dysfunction in spinocerebellar ataxias. J Neurol 2023; 270:5756-5772. [PMID: 37749264 PMCID: PMC10632228 DOI: 10.1007/s00415-023-11993-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Autonomic dysfunctions are prevalent in several cerebellar disorders, but they have not been systematically investigated in spinocerebellar ataxias (SCAs). Studies investigating autonomic deficits in SCAs are fragmented, with each one focusing on different autonomic dysfunctions and different SCA subtypes. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, we conducted a systematic review of the literature to assess the presence of autonomic dysfunctions in various SCAs. PubMed served as the primary database, and the Rayyan web application was employed for study screening. RESULTS We identified 46 articles investigating at least one autonomic function in patients with SCA. The results were analyzed and categorized based on the genetic subtype of SCA, thereby characterizing the specific autonomic deficits associated with each subtype. CONCLUSION This review confirms the presence of autonomic dysfunctions in various genetic subtypes of SCA, underscoring the cerebellum's role in the autonomic nervous system (ANS). It also emphasizes the importance of investigating these functions in clinical practice.
Collapse
Affiliation(s)
- Nicole Urbini
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy.
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179, Rome, Italy.
| | - Libera Siciliano
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179, Rome, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179, Rome, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185, Rome, Italy
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179, Rome, Italy
| |
Collapse
|
9
|
Szymoniuk M, Chin JH, Domagalski Ł, Biszewski M, Jóźwik K, Kamieniak P. Brain stimulation for chronic pain management: a narrative review of analgesic mechanisms and clinical evidence. Neurosurg Rev 2023; 46:127. [PMID: 37247036 PMCID: PMC10227133 DOI: 10.1007/s10143-023-02032-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Chronic pain constitutes one of the most common chronic complaints that people experience. According to the International Association for the Study of Pain, chronic pain is defined as pain that persists or recurs longer than 3 months. Chronic pain has a significant impact on individuals' well-being and psychosocial health and the economy of healthcare systems as well. Despite the availability of numerous therapeutic modalities, treatment of chronic pain can be challenging. Only about 30% of individuals with non-cancer chronic pain achieve improvement from standard pharmacological treatment. Therefore, numerous therapeutic approaches were proposed as a potential treatment for chronic pain including non-opioid pharmacological agents, nerve blocks, acupuncture, cannabidiol, stem cells, exosomes, and neurostimulation techniques. Although some neurostimulation methods such as spinal cord stimulation were successfully introduced into clinical practice as a therapy for chronic pain, the current evidence for brain stimulation efficacy in the treatment of chronic pain remains unclear. Hence, this narrative literature review aimed to give an up-to-date overview of brain stimulation methods, including deep brain stimulation, motor cortex stimulation, transcranial direct current stimulation, repetitive transcranial magnetic stimulation, cranial electrotherapy stimulation, and reduced impedance non-invasive cortical electrostimulation as a potential treatment for chronic pain.
Collapse
Affiliation(s)
- Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Jia-Hsuan Chin
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Łukasz Domagalski
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland.
| | - Mateusz Biszewski
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Jóźwik
- Student Scientific Association at the Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| |
Collapse
|