1
|
Barzegar S, Kakies CFM, Ciupercӑ D, Wischnewski M. Transcranial alternating current stimulation for investigating complex oscillatory dynamics and interactions. Int J Psychophysiol 2025; 212:112579. [PMID: 40315997 DOI: 10.1016/j.ijpsycho.2025.112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Neural oscillations play a fundamental role in human cognition and behavior. While electroencephalography (EEG) and related methods provide precise temporal recordings of these oscillations, they are limited in their ability to generate causal conclusions. Transcranial alternating current stimulation (tACS) has emerged as a promising non-invasive neurostimulation technique to modulate neural oscillations, which offers insights into their functional role and relation to human cognition and behavior. Originally, tACS is applied between two or more electrodes at a given frequency. However, recent advances have aimed to apply different current waveforms to target specific oscillatory dynamics. This systematic review evaluates the efficacy of non-standard tACS applications designed to investigate oscillatory patterns beyond simple sinusoidal stimulation. We categorized these approaches into three key domains: (1) phase synchronization techniques, including in-phase, anti-phase, and traveling wave stimulation; (2) non-sinusoidal tACS, which applies alternative waveforms such as composite, broadband or triangular oscillations; and (3) amplitude-modulated tACS and temporal interference stimulation, which allow for concurrent EEG recordings and deeper cortical targeting. While a number of studies provide evidence for the added value of these non-standard tACS procedures, other studies show opposing or null findings. Crucially, the number of studies for most applications is currently low, and as such, the goal of this review is to highlight both the promise and current limitations of these techniques, providing a foundation for future research in neurostimulation.
Collapse
Affiliation(s)
- Samira Barzegar
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Carolina F M Kakies
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Dorina Ciupercӑ
- Department of Psychology, University of Groningen, Groningen, the Netherlands
| | - Miles Wischnewski
- Department of Psychology, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Elyamany O, Iffland J, Bak J, Classen C, Nolte G, Schneider TR, Leicht G, Mulert C. Predictive role of endogenous phase lags between target brain regions in dual-site transcranial alternating current stimulation. Brain Stimul 2025; 18:780-793. [PMID: 40222667 DOI: 10.1016/j.brs.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Dual-site transcranial alternating current stimulation (tACS) provides a promising tool for modulating interregional brain connectivity by entraining neural oscillations. However, prior studies have reported inconsistent effects on connectivity and behavioral outcomes. They often focused on individualized stimulation-frequency as a key entrainment factor, while typically not focusing on the role of endogenous phase lags. To address this gap, we explored the predictive value of endogenous phase lags in dual-site tACS to modulate interhemispheric connectivity during dichotic listening. METHODS Thirty healthy participants (16 females) completed a dichotic listening task while undergoing simultaneous electroencephalography and tACS, including four bitemporal verum conditions with varying phase lags (0°, 45°, 90°, and 180°), and a sham condition across five sessions. Each session involved 20 min of 40-Hz tACS at a 0.5 mA peak-to-baseline amplitude applied to the temporal regions, with phase lags differing across sessions. Endogenous phase lags between the auditory cortices were calculated to explain changes in the laterality index (LI) across stimulation conditions by defining optimal and disruptive stimulation conditions for each participant. RESULTS Consistent with our hypothesis, our personalized analysis based on the calculated endogenous phase lags showed a significantly lower LI during the closest (optimal) stimulation condition compared to both the sham and farthest (disruptive) conditions. Conversely, the farthest stimulation condition did not statistically increase the LI compared to sham. CONCLUSIONS These findings highlight the importance of incorporating endogenous phase dynamics into dual-site tACS protocols, paving the way for more consistent and individualized neuromodulatory interventions.
Collapse
Affiliation(s)
- Osama Elyamany
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany; Centre for Mind, Brain and Behaviour (CMBB), Hans-Meerwein-Strasse 6, Marburg, 35043, Hessen, Germany.
| | - Jona Iffland
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany
| | - Josef Bak
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany
| | - Cornelius Classen
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Christoph Mulert
- Centre of Psychiatry, Justus-Liebig University, Klinikstrasse 36, Giessen, Hessen, 35392, Germany; Centre for Mind, Brain and Behaviour (CMBB), Hans-Meerwein-Strasse 6, Marburg, 35043, Hessen, Germany
| |
Collapse
|
3
|
Fujiyama H, Bowden VK, Tang AD, Tan J, Librizzi E, Loft S. Repeated application of bifocal transcranial alternating current stimulation improves network connectivity but not response inhibition: a double-blind sham control study. Cereb Cortex 2025; 35:bhaf110. [PMID: 40364567 PMCID: PMC12075771 DOI: 10.1093/cercor/bhaf110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/25/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Mounting evidence suggests that transcranial alternating current stimulation can enhance response inhibition, a cognitive process crucial for sustained effort and decision-making. However, most studies have focused on within-session effects, with limited investigation into the effects of repeated applications, which are crucial for clinical applications. We examined the effects of repeated bifocal transcranial alternating current stimulation targeting the right inferior frontal gyrus and pre-supplementary motor area on response inhibition, functional connectivity, and simulated driving performance. Thirty young adults (18-35 yr) received either a sham or transcranial alternating current stimulation (20 Hz, 20 min) across 5 sessions over 2 wk. Resting-state electroencephalography assessed functional connectivity between the pre-supplementary motor area and right inferior frontal gyrus at baseline, the final transcranial alternating current stimulation session, and the 7-d follow-up. Response inhibition was measured using a stop-signal task, and driving performance was assessed before and after the intervention. The results showed significant improvements in functional connectivity in the transcranial alternating current stimulation group between sessions, though response inhibition and driving braking performance remained unchanged. However, while not the targeted behavior, general driving performance potentially improved following bifocal transcranial alternating current stimulation, with participants maintaining stable driving behavior alongside increased spare attentional capacity. These findings suggest that repeated bifocal transcranial alternating current stimulation may enhance cortical connectivity and related cognitive-motor processes, supporting its potential for clinical applications.
Collapse
Affiliation(s)
- Hakuei Fujiyama
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Personalised Medicine Centre, Health Futures Institute, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Vanessa K Bowden
- School of Psychological Science, The University of Western Australia, 35 Stirling Hwy, Crawley Western Australia, 6009, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neurosciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Sciences, Ground RR Block QE II Medical Centre Ralph & Patricia Sarich Neuroscience Building, 8 Verdun St, Nedlands, WA 6009, Australia
- Pharmacology and Toxicology Discipline, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley Western Australia, 6009, Australia
| | - Jane Tan
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Elisha Librizzi
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Shayne Loft
- School of Psychological Science, The University of Western Australia, 35 Stirling Hwy, Crawley Western Australia, 6009, Australia
| |
Collapse
|
4
|
Johari K, Tabari F. HD-tACS over the left frontal aslant tract entrains theta activity associated with speech motor control. Brain Res 2025; 1850:149434. [PMID: 39743033 DOI: 10.1016/j.brainres.2024.149434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Transient disruption or permanent damage to the left Frontal Aslant Tract (FAT) is associated with deficits in speech production. The present study examined the application of theta (4 Hz) high-definition transcranial alternating current stimulation (HD-tACS) over the left SMA and IFG -as a part of FAT- as a potential multisite protocol to modulate neural and behavioral correlates of speech motor control. Twenty-one young adults participated in three counterbalanced sessions in which they received in-phase, anti-phase, and sham theta HD-tACS. In each session, 4 Hz stimulation was applied over the left IFG and SMA, and subsequently EEG data was recorded while participants performed a speech Go/No-Go task. Relative to sham and anti-phase, in-phase HD-tACS significantly improved speech reaction time. Neural data showed an increase in the power of frontal theta activity prior to speech initiation for the in-phase condition compared to sham. Moreover, in-phase stimulation increased the phase synchrony of theta activity between the left central and frontal electrodes. For speech inhibition, the power of theta activity increased following the in-phase condition over frontocentral electrodes. Furthermore, the in-phase condition enhanced the connectivity between the left central and frontal electrodes. Overall findings suggest that in-phase theta HD-tACS of FAT enhanced the neural markers of cognitive control required for motor preparation and inhibition during a speech task and have translational implications.
Collapse
Affiliation(s)
- Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Louisiana State University, Baton Rouge, LA, USA.
| | - Fatemeh Tabari
- Human Neurophysiology and Neuromodulation Lab, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
5
|
Lebihan B, Mobers L, Daley S, Battle R, Leclercq N, Misic K, Wansbrough K, Vallence AM, Tang A, Nitsche M, Fujiyama H. Bifocal tACS over the primary sensorimotor cortices increases interhemispheric inhibition and improves bimanual dexterity. Cereb Cortex 2025; 35:bhaf011. [PMID: 39895063 PMCID: PMC11814492 DOI: 10.1093/cercor/bhaf011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Concurrent application of transcranial alternating current stimulation over distant cortical regions has been shown to modulate functional connectivity between stimulated regions; however, the precise mechanisms remain unclear. Here, we investigated how bifocal transcranial alternating current stimulation applied over the bilateral primary sensorimotor cortices modulates connectivity between the left and right primary motor cortices (M1). Using a cross-over sham-controlled triple-blind design, 37 (27 female, age: 18 to 37 yrs) healthy participants received transcranial alternating current stimulation (1.0 mA, 20 Hz, 20 min) over the bilateral sensorimotor cortices. Before and after transcranial alternating current stimulation, functional connectivity between the left and right M1s was assessed using imaginary coherence measured via resting-state electroencephalography and interhemispheric inhibition via dual-site transcranial magnetic stimulation protocol. Additionally, manual dexterity was assessed using the Purdue pegboard task. While imaginary coherence remained unchanged after stimulation, beta (20 Hz) power decreased during the transcranial alternating current stimulation session. Bifocal transcranial alternating current stimulation but not sham strengthened interhemispheric inhibition between the left and right M1s and improved bimanual assembly performance. These results suggest that improvement in bimanual performance may be explained by modulation in interhemispheric inhibition, rather than by coupling in the oscillatory activity. As functional connectivity underlies many clinical symptoms in neurological and psychiatric disorders, these findings are invaluable in developing noninvasive therapeutic interventions that target neural networks to alleviate symptoms.
Collapse
Affiliation(s)
- Brooke Lebihan
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Lauren Mobers
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Shannae Daley
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Ruth Battle
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Natasia Leclercq
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Katherine Misic
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Kym Wansbrough
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Ann-Maree Vallence
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Personalised Medicine Centre, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| | - Alexander Tang
- Experimental and Regenerative Neurosciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Sciences, Ground RR Block QE II Medical Centre Ralph & Patricia Sarich Neuroscience Building, 8 Verdun St, Nedlands, WA 6009, Australia
- Pharmacology and Toxicology Discipline, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley Western Australia, 6009, Australia
| | - Michael Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Ardeystraße 67, 44139 Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, H1, Philipp-Reis-Platz 1a/Etage 8, 33602 Bielefeld, Germany
| | - Hakuei Fujiyama
- School of Psychology, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
- Personalised Medicine Centre, Murdoch University, Western Australia, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|