1
|
Shackleford GM, Shi XH, Swanson KS, Mahdi MY, Gonzalez-Gomez I, Asgharzadeh S, D’Apuzzo M, Erdreich-Epstein A, Moats RA. BarTeL, a Genetically Versatile, Bioluminescent and Granule Neuron Precursor-Targeted Mouse Model for Medulloblastoma. PLoS One 2016; 11:e0156907. [PMID: 27310018 PMCID: PMC4911170 DOI: 10.1371/journal.pone.0156907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/20/2016] [Indexed: 01/08/2023] Open
Abstract
Medulloblastomas are the most common malignant pediatric brain tumor and have been divided into four major molecular subgroups. Animal models that mimic the principal molecular aberrations of these subgroups will be important tools for preclinical studies and allow greater understanding of medulloblastoma biology. We report a new transgenic model of medulloblastoma that possesses a unique combination of desirable characteristics including, among others, the ability to incorporate multiple and variable genes of choice and to produce bioluminescent tumors from a limited number of somatic cells within a normal cellular environment. This model, termed BarTeL, utilizes a Barhl1 homeobox gene promoter to target expression of a bicistronic transgene encoding both the avian retroviral receptor TVA and an eGFP-Luciferase fusion protein to neonatal cerebellar granule neuron precursor (cGNP) cells, which are cells of origin for the sonic hedgehog (SHH) subgroup of human medulloblastomas. The Barhl1 promoter-driven transgene is expressed strongly in mammalian cGNPs and weakly or not at all in mature granule neurons. We efficiently induced bioluminescent medulloblastomas expressing eGFP-luciferase in BarTeL mice by infection of a limited number of somatic cGNPs with avian retroviral vectors encoding the active N-terminal fragment of SHH and a stabilized MYCN mutant. Detection and quantification of the increasing bioluminescence of growing tumors in young BarTeL mice was facilitated by the declining bioluminescence of their uninfected maturing cGNPs. Inclusion of eGFP in the transgene allowed enriched sorting of cGNPs from neonatal cerebella. Use of a single bicistronic avian vector simultaneously expressing both Shh and Mycn oncogenes increased the medulloblastoma incidence and aggressiveness compared to mixed virus infections. Bioluminescent tumors could also be produced by ex vivo transduction of neonatal BarTeL cerebellar cells by avian retroviruses and subsequent implantation into nontransgenic cerebella. Thus, BarTeL mice provide a versatile model with opportunities for use in medulloblastoma biology and therapeutics.
Collapse
Affiliation(s)
- Gregory M. Shackleford
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Radiology, The Saban Research Institute, Children’s Hospital Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - Xiang-He Shi
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kimberly S. Swanson
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Radiology, The Saban Research Institute, Children’s Hospital Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Min Y. Mahdi
- Department of Radiology, The Saban Research Institute, Children’s Hospital Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ignacio Gonzalez-Gomez
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Shahab Asgharzadeh
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Massimo D’Apuzzo
- Department of Pathology, City of Hope National Medical Center, Duarte, California, United States of America
| | - Anat Erdreich-Epstein
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Rex A. Moats
- Department of Radiology, The Saban Research Institute, Children’s Hospital Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
2
|
Martinez-Lopez JE, Moreno-Bravo JA, Madrigal MP, Martinez S, Puelles E. Mesencephalic basolateral domain specification is dependent on Sonic Hedgehog. Front Neuroanat 2015; 9:12. [PMID: 25741244 PMCID: PMC4330881 DOI: 10.3389/fnana.2015.00012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/27/2015] [Indexed: 11/20/2022] Open
Abstract
In the study of central nervous system morphogenesis, the identification of new molecular markers allows us to identify domains along the antero-posterior and dorso-ventral (DV) axes. In the past years, the alar and basal plates of the midbrain have been divided into different domains. The precise location of the alar-basal boundary is still under discussion. We have identified Barhl1, Nhlh1 and Six3 as appropriate molecular markers to the adjacent domains of this transition. The description of their expression patterns and the contribution to the different mesencephalic populations corroborated their role in the specification of these domains. We studied the influence of Sonic Hedgehog on these markers and therefore on the specification of these territories. The lack of this morphogen produced severe alterations in the expression pattern of Barhl1 and Nhlh1 with consequent misspecification of the basolateral (BL) domain. Six3 expression was apparently unaffected, however its distribution changed leading to altered basal domains. In this study we confirmed the localization of the alar-basal boundary dorsal to the BL domain and demonstrated that the development of the BL domain highly depends on Shh.
Collapse
Affiliation(s)
- Jesus E Martinez-Lopez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain
| | - Juan A Moreno-Bravo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain
| | - M Pilar Madrigal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain
| | - Salvador Martinez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain ; Instituto Murciano de Investigacion Biomedica IMIB-Arrixaca (CIBERSAM) Murcia, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez, Consejo Superior de Investigaciones Científicas (UMH-CSIC) Alicante, Spain
| |
Collapse
|
4
|
Reig G, Cabrejos ME, Concha ML. Functions of BarH transcription factors during embryonic development. Dev Biol 2006; 302:367-75. [PMID: 17098224 DOI: 10.1016/j.ydbio.2006.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/06/2006] [Accepted: 10/05/2006] [Indexed: 10/24/2022]
Abstract
This paper reviews the developmental role of a group of homeobox-containing genes firstly described in the early nineties as critical factors regulating eye development in Drosophila. These genes received the name of BarH due to the Drosophila "Bar" mutant phenotype and, since then, vertebrate homologues (named BarH-like or Barhl) have been described in a number of species of fish, amphibians and mammals. During embryonic development, BarH/Barhl are expressed primarily in the central nervous system where they play essential roles in decisions of cell fate, migration and survival. Transcriptional regulation mediated by these proteins involves either repression or activation mechanisms. In Drosophila, BarH is involved in morphogenesis and fate determination of the eye and external sensory organs, in regional prepatterning of the notum, and in formation and specification of distal leg segments. Vertebrate Barhl shares some functional properties with the fly counterparts, such as the ability to interact with basic helix-loop-helix (bHLH) proneural proteins, and plays crucial roles during cell type specification within the retina, acquisition of commissural neuron identity in the spinal cord, migration of cerebellar cells, and in cell survival within the neural plate, cochlea and cerebellum.
Collapse
Affiliation(s)
- Germán Reig
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, Chile
| | | | | |
Collapse
|