1
|
Jia R, Zhu G, Zhao R, Li T, Jiang W, Cui X. Hydrogen treatment reduces electroencephalographic activity and neuronal death in rats with refractory status epilepticus by inhibiting membrane NR2B phosphorylation and oxidative stress. J Int Med Res 2024; 52:3000605241235589. [PMID: 38546233 PMCID: PMC10981235 DOI: 10.1177/03000605241235589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 04/01/2024] Open
Abstract
OBJECTIVE To investigate the effects of hydrogen therapy on epileptic seizures in rats with refractory status epilepticus and the underlying mechanisms. METHODS Status epilepticus was induced using pilocarpine. The effects of hydrogen treatment on epilepsy severity in model rats were then monitored using Racine scores and electroencephalography (EEG), followed by western blot of plasma membrane N-methyl-D-aspartate receptor subtype 2B (NR2B) and phosphorylated NR2B expression. We also generated a cellular epilepsy model using Mg2+-free medium and used polymerase chain reaction to investigate the neuroprotective effects of hydrogen. RESULTS There were no significant differences in Racine scores between the hydrogen and control groups. EEG amplitudes were lower in the hydrogen treatment group than in the control group. In epilepsy model rats, hippocampal cell membrane NR2B expression and phosphorylation increased gradually over time. Although hippocampal cell membrane NR2B expression was not significantly different between the two groups, NR2B phosphorylation levels were significantly lower in the hydrogen group. Hydrogen treatment also increased superoxide dismutase, mitochondrial (SOD2) expression. CONCLUSIONS Hydrogen treatment reduced EEG amplitudes and NR2B phosphorylation; it also decreased neuronal death by reducing oxidative stress. Hydrogen may thus be a potential treatment for refractory status epilepticus by inhibiting membrane NR2B phosphorylation and oxidative stress.
Collapse
Affiliation(s)
- Ruihua Jia
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Gemin Zhu
- Department of Neurology, Xi’an Central Hospital, Xi’an, China
| | - Rui Zhao
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoli Cui
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
| |
Collapse
|
2
|
Jia C, Zhang R, Wei L, Xie J, Zhou S, Yin W, Hua X, Xiao N, Ma M, Jiao H. Investigation of the mechanism of tanshinone IIA to improve cognitive function via synaptic plasticity in epileptic rats. PHARMACEUTICAL BIOLOGY 2023; 61:100-110. [PMID: 36548216 PMCID: PMC9788714 DOI: 10.1080/13880209.2022.2157843] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 06/04/2023]
Abstract
CONTEXT Tanshinone IIA is an extract of Salvia miltiorrhiza Bunge (Labiatae) used to treat cardiovascular disorders. It shows potential anticonvulsant and cognition-protective properties. OBJECTIVE We investigated the mechanism of tanshinone IIA on antiepileptic and cognition-protective effects in the model of epileptic rats. MATERIALS AND METHODS Lithium chloride (LiCl)-pilocarpine-induced epileptic Wistar rats were randomly assigned to the following groups (n = 12): control (blank), model, sodium valproate (VPA, 189 mg/kg/d, positive control), tanshinone IIA low dose (TS IIA-L, 10 mg/kg/d), medium dose (TS IIA-M, 20 mg/kg/d) and high dose (TS IIA-H, 30 mg/kg/d). Then, epileptic behavioural observations, Morris water maze test, Timm staining, transmission electron microscopy, immunofluorescence staining, western blotting and RT-qPCR were measured. RESULTS Compared with the model group, tanshinone IIA reduced the frequency and severity of seizures, improved cognitive impairment, and inhibited hippocampal mossy fibre sprouting score (TS IIA-M 1.50 ± 0.22, TS IIA-H 1.17 ± 0.31 vs. model 2.83 ± 0.31), as well as improved the ultrastructural disorder. Tanshinone IIA increased levels of synapse-associated proteins synaptophysin (SYN) and postsynaptic dense substance 95 (PSD-95) (SYN: TS IIA 28.82 ± 2.51, 33.18 ± 2.89, 37.29 ± 1.69 vs. model 20.23 ± 3.96; PSD-95: TS IIA 23.10 ± 0.91, 26.82 ± 1.41, 27.00 ± 0.80 vs. model 18.28 ± 1.01). DISCUSSION AND CONCLUSIONS Tanshinone IIA shows antiepileptic and cognitive function-improving effects, primarily via regulating synaptic plasticity. This research generates a theoretical foundation for future research on potential clinical applications for tanshinone IIA.
Collapse
Affiliation(s)
- Chen Jia
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Rui Zhang
- Department of Pharmacy, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Liming Wei
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiao Xie
- Department of Pharmacy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Suqin Zhou
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen Yin
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Xi Hua
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Nan Xiao
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Meile Ma
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Haisheng Jiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
3
|
Abstract
Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized by epilepsy, intellectual disability, autistic features, speech deficits, and sleep and breathing abnormalities. Neurologically, patients with all three disorders display microcephaly, aberrant dendritic morphology, reduced spine density, and an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar behavioral and neurobiological defects and were referred to as congenital or variant Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder (CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental disorders with some distinctive features have resulted in separate focus being placed on each disorder with the assumption that distinct molecular mechanisms underlie their pathogenesis. However, given that many of the core symptoms and neurological features are shared, it is likely that the disorders share some critical molecular underpinnings. This review discusses the possibility that deregulation of common molecules in neurons and astrocytes plays a central role in key behavioral and neurological abnormalities in all three disorders. These include KCC2, a chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, along with increased expression of GluD1, is involved in the excitatory/inhibitory that represents a key aspect in all three disorders. In addition, astrocyte-derived brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.
Collapse
Affiliation(s)
- Santosh R D’Mello
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71104, USA
| |
Collapse
|
4
|
Landucci E, Mazzantini C, Buonvicino D, Pellegrini-Giampietro DE, Bergonzi MC. Neuroprotective Effects of Thymoquinone by the Modulation of ER Stress and Apoptotic Pathway in In Vitro Model of Excitotoxicity. Molecules 2021; 26:molecules26061592. [PMID: 33805696 PMCID: PMC7998420 DOI: 10.3390/molecules26061592] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Experimental evidence indicates that the activation of ionotropic glutamate receptors plays an important role in neurological disorders’ models such as epilepsy, cerebral ischemia and trauma. The glutamate receptor agonist kainic acid (KA) induces seizures and excitotoxic cell death in the CA3 region of the hippocampus. Thymoquinone (TQ) is the most important component of the essential oil obtained from black cumin (Nigella sativa L.) seeds. It has many pharmacological actions including antioxidant, anti-inflammatory, and anti-apoptotic effects. TQ was used in an in vitro experimental model of primary cultures where excitotoxicity was induced. Briefly, rat organotypic hippocampal slices were exposed to 5 µM KA for 24 h. Cell death in the CA3 subregions of slices was quantified by measuring propidium iodide fluorescence. The cross-talk between TQ, ER stress and apoptotic pathways was investigated by Western blot. In untreated slices TQ (10 µM) induced a significant increase on the PSD95 levels and it decreased the excitotoxic injury induced by KA. Additionally, TQ was able to ameliorate the KA-induced increase in unfolded proteins GRP78 and GRP94 expression. Finally, TQ was able to partially rescue the reduction of the KA-induced apoptotic pathway activation. Our results suggest that TQ modulates the processes leading to post-kainate neuronal death in the CA3 hippocampal area.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.B.); (D.E.P.-G.)
- Correspondence: (E.L.); (M.C.B.); Tel.: +39-055-2758378 (E.L.); +39-055-455-3678 (M.C.B.)
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.B.); (D.E.P.-G.)
| | - Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.B.); (D.E.P.-G.)
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.B.); (D.E.P.-G.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
- Correspondence: (E.L.); (M.C.B.); Tel.: +39-055-2758378 (E.L.); +39-055-455-3678 (M.C.B.)
| |
Collapse
|
5
|
Sbai O, Soussi R, Bole A, Khrestchatisky M, Esclapez M, Ferhat L. The actin binding protein α-actinin-2 expression is associated with dendritic spine plasticity and migrating granule cells in the rat dentate gyrus following pilocarpine-induced seizures. Exp Neurol 2020; 335:113512. [PMID: 33098872 DOI: 10.1016/j.expneurol.2020.113512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
α-actinin-2 (α-actn-2) is an F-actin-crosslinking protein, localized in dendritic spines. In vitro studies suggested that it is involved in spinogenesis, morphogenesis, actin organization, cell migration and anchoring of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptors in dendritic spines. However, little is known regarding its function in vivo. We examined the levels of α-actn-2 expression within the dentate gyrus (DG) during the development of chronic limbic seizures (epileptogenesis) induced by pilocarpine in rats. In this model, plasticity of the DG glutamatergic granule cells including spine loss, spinogenesis, morphogenesis, neo-synaptogenesis, aberrant migration, and alterations of NMDA receptors have been well characterized. We showed that α-actn-2 immunolabeling was reduced in the inner molecular layer at 1-2 weeks post-status epilepticus (SE), when granule cell spinogenesis and morphogenesis occur. This low level persisted at the chronic stage when new functional synapses are established. This decreased of α-actn-2 protein is concomitant with the recovery of drebrin A (DA), another actin-binding protein, at the chronic stage. Indeed, we demonstrated in cultured cells that in contrast to DA, α-actn-2 did not protect F-actin destabilization and DA inhibited α-actn-2 binding to F-actin. Such alteration could affect the anchoring of NR1 in dendritic spines. Furthermore, we showed that the expression of α-actn-2 and NR1 are co-down-regulated in membrane fractions of pilocarpine animals at chronic stage. Last, we showed that α-actn-2 is expressed in migrating newly born granule cells observed within the hilus of pilocarpine-treated rats. Altogether, our results suggest that α-actn-2 is not critical for the structural integrity and stabilization of granule cell dendritic spines. Instead, its expression is regulated when spinogenesis and morphogenesis occur and within migrating granule cells. Our data also suggest that the balance between α-actn-2 and DA expression levels may modulate NR1 anchoring within dendritic spines.
Collapse
Affiliation(s)
- Oualid Sbai
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Rabia Soussi
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Angélique Bole
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | - Monique Esclapez
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Lotfi Ferhat
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
| |
Collapse
|
6
|
Abbasova K, Kubová H, Mareš P. Does status epilepticus modify the effect of ifenprodil on cortical epileptic afterdischarges in immature rats? Pharmacol Rep 2018; 70:126-132. [PMID: 29355816 DOI: 10.1016/j.pharep.2017.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/26/2017] [Accepted: 08/23/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Ifenprodil as a specific antagonist of NMDA receptors containing a dominant NR2B subunit exhibits age-dependent anticonvulsant action. Possible changes of this action due to status epilepticus (SE) elicited at early stage of development were studied using cortical epileptic afterdischarges (ADs) as a model. METHODS Lithium-pilocarpine SE was induced at postnatal day 12 and effects of ifenprodil were studied 3, 6, 9, and 13 days after SE in rat pups with implanted epidural electrodes. Controls (LiPAR) received saline instead of pilocarpine. ADs were elicited by low frequency stimulation of sensorimotor cortex. Intensity of stimulation current increased in 18 steps from 0.2 to 15 mA. Ifenprodil (20 mg/kg) was administered intraperitoneally (ip) after the stimulation with 3.5-mA current. Threshold for four different phenomena as well as duration of ADs were evaluated. RESULTS The threshold for the transition into the limbic type of ADs was higher in 15-day-old SE rats than in LiPAR controls. Opposite difference was found in 18-day-old animals, older rats did not exhibit any difference. Isolated significant changes in total duration of ADs were found after high stimulation intensities. These changes appeared in 18-day-old rats where ADs were shorter in SE than in control LiPAR rats. CONCLUSIONS Changes in ifenprodil action were found only in the first week after SE but not in the second week. Interpretation of the results is complicated by failure of significant differences between SE and LiPAR rats probably due to a high dose of paraldehyde.
Collapse
Affiliation(s)
- Kenul Abbasova
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Biology, Moscow State University, Moscow, Russia
| | - Hana Kubová
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Mareš
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
7
|
Kinjo ER, Rodríguez PXR, Dos Santos BA, Higa GSV, Ferraz MSA, Schmeltzer C, Rüdiger S, Kihara AH. New Insights on Temporal Lobe Epilepsy Based on Plasticity-Related Network Changes and High-Order Statistics. Mol Neurobiol 2017; 55:3990-3998. [PMID: 28555345 DOI: 10.1007/s12035-017-0623-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/16/2017] [Indexed: 12/21/2022]
Abstract
Epilepsy is a disorder of the brain characterized by the predisposition to generate recurrent unprovoked seizures, which involves reshaping of neuronal circuitries based on intense neuronal activity. In this review, we first detailed the regulation of plasticity-associated genes, such as ARC, GAP-43, PSD-95, synapsin, and synaptophysin. Indeed, reshaping of neuronal connectivity after the primary, acute epileptogenesis event increases the excitability of the temporal lobe. Herein, we also discussed the heterogeneity of neuronal populations regarding the number of synaptic connections, which in the theoretical field is commonly referred as degree. Employing integrate-and-fire neuronal model, we determined that in addition to increased synaptic strength, degree correlations might play essential and unsuspected roles in the control of network activity. Indeed, assortativity, which can be described as a condition where high-degree correlations are observed, increases the excitability of neural networks. In this review, we summarized recent topics in the field, and data were discussed according to newly developed or unusual tools, as provided by mathematical graph analysis and high-order statistics. With this, we were able to present new foundations for the pathological activity observed in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Erika Reime Kinjo
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Pedro Xavier Royero Rodríguez
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Bianca Araújo Dos Santos
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mariana Sacrini Ayres Ferraz
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Christian Schmeltzer
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- Institute of Physics, Humboldt University at Berlin, Berlin, Germany
| | - Sten Rüdiger
- Institute of Physics, Humboldt University at Berlin, Berlin, Germany
| | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Szczurowska E, Mareš P. Different action of a specific NR2B/NMDA antagonist Ro 25-6981 on cortical evoked potentials and epileptic afterdischarges in immature rats. Brain Res Bull 2015; 111:1-8. [DOI: 10.1016/j.brainresbull.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 01/13/2023]
|
9
|
Fu Q, Sun Z, Zhang J, Gao N, Qi F, Che F, Ma G. Diazoxide preconditioning antagonizes cytotoxicity induced by epileptic seizures. Neural Regen Res 2014; 8:1000-6. [PMID: 25206393 PMCID: PMC4145886 DOI: 10.3969/j.issn.1673-5374.2013.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/05/2013] [Indexed: 01/15/2023] Open
Abstract
Diazoxide, an activator of mitochondrial ATP-sensitive potassium channels, can protect neurons and astrocytes against oxidative stress and apoptosis. In this study, we established a cellular model of epilepsy by culturing hippocampal neurons in magnesium-free medium, and used this to investigate effects of diazoxide preconditioning on the expression of inwardly rectifying potassium channel (Kir) subunits of the ATP-sensitive potassium. We found that neuronal viability was significantly reduced in the epileptic cells, whereas it was enhanced by diazoxide preconditioning. Double immunofluorescence and western blot showed a significant increase in the expression of Kir6.1 and Kir6.2 in epileptic cells, especially at 72 hours after seizures. Diazoxide pretreatment completely reversed this effect at 24 hours after seizures. In addition, Kir6.1 expression was significantly upregulated compared with Kir6.2 in hippocampal neurons after seizures. These findings indicate that diazoxide pretreatment may counteract epileptiform discharge-induced cytotoxicity by suppressing the expression of Kir subunits.
Collapse
Affiliation(s)
- Qingxi Fu
- Department of Neurology, Linyi People's Hospital, Linyi 276003, Shandong Province, China
| | - Zhiqing Sun
- Department of Neurology, Linyi People's Hospital, Linyi 276003, Shandong Province, China
| | - Jinling Zhang
- Department of Neurology, Linyi People's Hospital, Linyi 276003, Shandong Province, China
| | - Naiyong Gao
- Department of Neurology, Linyi People's Hospital, Linyi 276003, Shandong Province, China
| | - Faying Qi
- Department of Neurology, Linyi People's Hospital, Linyi 276003, Shandong Province, China
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi 276003, Shandong Province, China
| | - Guozhao Ma
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong Province, China
| |
Collapse
|
10
|
Augmentation of normal and glutamate-impaired neuronal respiratory capacity by exogenous alternative biofuels. Transl Stroke Res 2013; 4:643-51. [PMID: 24323418 DOI: 10.1007/s12975-013-0275-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/21/2013] [Indexed: 01/07/2023]
Abstract
Mitochondrial respiratory capacity is critical for responding to changes in neuronal energy demand. One approach toward neuroprotection is the administration of alternative energy substrates ("biofuels") to overcome brain injury-induced inhibition of glucose-based aerobic energy metabolism. This study tested the hypothesis that exogenous pyruvate, lactate, β-hydroxybutyrate, and acetyl-L-carnitine each increase neuronal respiratory capacity in vitro either in the absence of or following transient excitotoxic glutamate receptor stimulation. Compared to the presence of 5 mM glucose alone, the addition of pyruvate, lactate, or β-hydroxybutyrate (1.0-10.0 mM) to either day in vitro (DIV) 14 or 7 rat cortical neurons resulted in significant, dose-dependent stimulation of respiratory capacity, measured by cell respirometry as the maximal O2 consumption rate in the presence of the respiratory uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. A 30-min exposure to 100 μM glutamate impaired respiratory capacity for DIV 14, but not DIV 7, neurons. Glutamate reduced the respiratory capacity for DIV 14 neurons with glucose alone by 25 % and also reduced respiratory capacity with glucose plus pyruvate, lactate, or β-hydroxybutyrate. However, respiratory capacity in glutamate-exposed neurons following pyruvate or β-hydroxybutyrate addition was still, at least, as high as that obtained with glucose alone in the absence of glutamate exposure. These results support the interpretation that previously observed neuroprotection by exogenous pyruvate, lactate, or β-hydroxybutyrate is at least partially mediated by their preservation of neuronal respiratory capacity.
Collapse
|
11
|
Murck H. Ketamine, magnesium and major depression--from pharmacology to pathophysiology and back. J Psychiatr Res 2013; 47:955-65. [PMID: 23541145 DOI: 10.1016/j.jpsychires.2013.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/14/2013] [Accepted: 02/26/2013] [Indexed: 01/08/2023]
Abstract
UNLABELLED The glutamatergic mechanism of antidepressant treatments is now in the center of research to overcome the limitations of monoamine-based approaches. There are several unresolved issues. For the action of the model compound, ketamine, NMDA-receptor block, AMPA-receptor activation and BDNF release appear to be involved in a mechanism, which leads to synaptic sprouting and strengthened synaptic connections. The link to the pathophysiology of depression is not clear. An overlooked connection is the role of magnesium, which acts as physiological NMDA-receptor antagonist: 1. There is overlap between the actions of ketamine with that of high doses of magnesium in animal models, finally leading to synaptic sprouting. 2. Magnesium and ketamine lead to synaptic strengthening, as measured by an increase in slow wave sleep in humans. 3. Pathophysiological mechanisms, which have been identified as risk factors for depression, lead to a reduction of (intracellular) magnesium. These are neuroendocrine changes (increased cortisol and aldosterone) and diabetes mellitus as well as Mg(2+) deficiency. 4. Patients with therapy refractory depression appear to have lower CNS Mg(2+) levels in comparison to health controls. 5. Experimental Mg(2+) depletion leads to depression- and anxiety like behavior in animal models. 6. Ketamine, directly or indirectly via non-NMDA glutamate receptor activation, acts to increase brain Mg(2+) levels. Similar effects have been observed with other classes of antidepressants. 7. Depressed patients with low Mg(2+) levels tend to be therapy refractory. Accordingly, administration of Mg(2+) either alone or in combination with standard antidepressants acts synergistically on depression like behavior in animal models. CONCLUSION On the basis of the potential pathophysiological role of Mg(2+)-regulation, it may be possible to predict the action of ketamine and of related compounds based on Mg(2+) levels. Furthermore, screening for compounds to increase neuronal Mg(2+) concentration could be a promising instrument to identify new classes of antidepressants. Overall, any discussion of the glutamatergic system in affective disorders should consider the role of Mg(2+).
Collapse
|
12
|
Hyperthermia induces epileptiform discharges in cultured rat cortical neurons. Brain Res 2011; 1417:87-102. [PMID: 21907327 DOI: 10.1016/j.brainres.2011.08.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 01/28/2023]
|
13
|
Desensitization of adenosine A(1) receptors in rat immature cortical neurons. Eur J Pharmacol 2011; 670:365-71. [PMID: 21946103 DOI: 10.1016/j.ejphar.2011.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 09/05/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022]
Abstract
Adenosine plays an important neuroprotective role in brain, usually mediated by the activation of adenosine A₁ receptors. Prolonged activation of a G-protein-coupled receptor generally leads to the partial loss of the responsiveness of receptor-mediated transduction pathways (desensitization). Rat immature cortical neurons were treated with 100 nM⁻N⁶-phenylisopropyladenosine (R-PIA), a selective A₁ receptor agonist, and the effect on adenosine A₁ receptor/adenylyl cyclase pathway was studied. Incubation with R-PIA for 6, 12, 24 and 48 h elicited a time-dependent decrease in adenosine A₁ receptors in plasma membranes (92, 58, 43 and 26% of control, respectively), which was associated with variations in microsomal fraction (21, 56, 124 and 233% of control, respectively), suggesting the internalization and down-regulation of adenosine A₁ receptors. Moreover, real-time PCR assays showed a significant increase in mRNA levels coding adenosine A₁ receptor after the longest treatment period (48 h). In addition, αGi₁₋₂ protein levels detected in microsomes and mRNA levels coding αGi₁ protein were increased after 48 h of treatment with R-PIA, suggesting the synthesis of new αGi₁ proteins. Finally, adenylyl cyclase inhibition elicited by 2-Chloro-N6-cyclopentyladenosine (CPA), a selective adenosine A₁ receptor agonist, was significantly reduced after 12, 24 and 48h of treatment (37, 24 and 23%, respectively) as compared to controls (54%), suggesting the desensitization of adenosine A₁ receptor/adenylyl cyclase pathway. These results suggest that adenosine A₁ receptors desensitize slowly after prolonged receptor activation in immature cortical neurons, showing mechanisms of desensitization similar to those described not only in fetal but also in adult rat brain.
Collapse
|
14
|
Jiang Q, Wu Y, Wang J, Wu X, Qin J, Jiang Y. Characterization of developing rat cortical neurons after epileptiform discharges. Int J Dev Neurosci 2010; 28:455-63. [PMID: 20600787 DOI: 10.1016/j.ijdevneu.2010.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/09/2010] [Accepted: 06/17/2010] [Indexed: 12/27/2022] Open
Abstract
The developing brain undergoes major reorganization in response to early environmental changes. The elevated excitation that allows the neonatal brain to develop quickly also makes it highly vulnerable to age-specific seizures that can cause lifelong cognitive and neurological disability. However, it is not yet clear how seizures interfere with the developmental program and how epileptogenesis actualize. Here, by using an in vitro model, we report a global abnormal status of cortical cells after epileptiform activity was induced: more NR2B is targeted on the neuronal surface with less NR2A. Dendrotoxicity including dendritic beading, distortion and simplification of dendritic branching patterns were observed. Early-life seizure-like insults also exert effects on the excitatory synaptic size and interactions between PSD-95 and NR2A or NR2B receptor subunits. Our findings support an abnormal development or, worse, cellular degeneration that resembles immature cells, which may enlighten better understanding of the pathological mechanism of early-life seizures and its related injury.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The lifespan risk of seizures is highest in the neonatal period. Current therapies have limited efficacy. Although the treatment of neonatal seizures has not changed significantly in the last several decades, there has been substantial progress in understanding developmental mechanisms that influence seizure generation and responsiveness to anticonvulsants. This article provides an overview of current approaches to the diagnosis and treatment of neonatal seizures, and some of the recent insights about the pathophysiology of neonatal seizures that may provide the foundation for better treatment are identified.
Collapse
Affiliation(s)
- Frances E Jensen
- Children's Hospital Boston, CLS 14073, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Ullner PM, Di Nardo A, Goldman JE, Schobel S, Yang H, Engelstad K, Wang D, Sahin M, De Vivo DC. Murine Glut-1 transporter haploinsufficiency: postnatal deceleration of brain weight and reactive astrocytosis. Neurobiol Dis 2009; 36:60-9. [PMID: 19591936 PMCID: PMC2929707 DOI: 10.1016/j.nbd.2009.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/23/2009] [Accepted: 06/28/2009] [Indexed: 11/17/2022] Open
Abstract
Glucose transporter type 1 (Glut-1) facilitates glucose flux across the blood-brain-barrier. In humans, Glut-1 deficiency causes acquired microcephaly, seizures and ataxia, which are recapitulated in our Glut-1 haploinsufficient mouse model. Postnatal brain weight deceleration and development of reactive astrogliosis were significant by P21 in Glut-1(+/-) mice. The brain weight differences remained constant after P21 whereas the reactive astrocytosis continued to increase and peaked at P90. Brain immunoblots showed increased phospho-mTOR and decreased phospho-GSK3-beta by P14. After fasting, the mature Glut-1(+/-) females showed a trend towards elevated phospho-GSK3-beta, a possible neuroprotective response. Lithium chloride treatment of human skin fibroblasts from control and Glut-1 DS patients produced a 45% increase in glucose uptake. Brain imaging of mature Glut-1(+/-) mice revealed a significantly decreased hippocampal volume. These subtle immunochemical changes reflect chronic nutrient deficiency during brain development and represent the experimental correlates to the human neurological phenotype associated with Glut-1 DS.
Collapse
Affiliation(s)
- Paivi M Ullner
- Department of Neurology, Colleen Giblin Laboratories for Pediatric Neurology Research, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sun QJ, Duan RS, Wang AH, Shang W, Zhang T, Zhang XQ, Chi ZF. Alterations of NR2B and PSD-95 expression in hippocampus of kainic acid-exposed rats with behavioural deficits. Behav Brain Res 2009; 201:292-9. [PMID: 19428647 DOI: 10.1016/j.bbr.2009.02.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/19/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
Temporal lobe epilepsy (TLE), characterized by spontaneous recurrent seizure (SRS), is associated with behavioural problems, but the underlying molecular mechanisms have not been clearly identified. In the present study, kainic acid (KA) was administered systemically in adult male Wistar rats to induce SRS. Behavioural performance analyses at 2, 4, and 6 weeks post-status epilepticus (post-SE) showed spatial learning memory deficit, anxiety and increased locomotor activity in rats with long-term SRS compared with rats without SRS after normal saline (NS) or KA-valproate (KA-VPA) treatment. No neuronal cell loss was observed in the hippocampus at 6 weeks post-SE. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analyses revealed that down-regulation of NMDA receptor subunit 2B (NR2B) and postsynaptic density protein-95 (PSD-95) expression in adult hippocampus was found at 4 weeks post-SE and a further decrease at 6 weeks post-SE compared with rats without SRS after NS or KA-VPA treatment. Furthermore, the decreased expression of NR2B and PSD-95 was correlated with the representatively behavioural deficit. These findings suggest that long-term SRS might decrease NR2B/PSD-95 expression in adult hippocampus and consequently cause behavioural deficits, including spatial learning memory deficit, anxiety and increased locomotor activity. Maintaining the expression of NR2B/PSD-95 might partially contribute to the normal behaviour in rats with long-term SRS.
Collapse
Affiliation(s)
- Qin-Jian Sun
- Department of Neurology, Qianfoshan Hospital, Shandong University, 66 Jingshi Road, Jinan, Shandong 250014, PR China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Jiang Q, Wang J, Wu Y, Wu X, Qin J, Jiang Y. Early-life epileptiform discharges exert both rapid and long-lasting effects on AMPAR subunit composition and distribution in developing neurons. Neurosci Lett 2008; 444:31-5. [DOI: 10.1016/j.neulet.2008.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/28/2008] [Accepted: 08/05/2008] [Indexed: 11/15/2022]
|
19
|
The NMDAR subunit NR2B expression is modified in hippocampus after repetitive seizures. Neurochem Res 2008; 34:819-26. [PMID: 18751892 DOI: 10.1007/s11064-008-9828-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
NMDA receptor is involved in synaptic plasticity, learning, memory and neurological diseases like epilepsia and it is the major mediator of excitotoxicity. NR2B-containing NMDA receptors may be playing a crucial role in epileptic disorders. In the present study the effect of the convulsant drug 3-mercaptopropionic acid (MP) repetitive administration (4-7 days) on the hippocampal NR2B subunit was studied. A significant decrease in NR2B in the whole hippocampus was observed after MP4 with a tendency to recover to normal values in MP7 by western blot assay. Immunohistochemical studies showed a decrease in several CA1 and CA2/3 strata (21-73%). MP7 showed a reversion of the drop observed at 4 days in stratum oriens, pyramidal cell layer in CA1, CA2/3 and CA1 stratum radiatum. A significant fall in the lacunosum molecular layer of both areas and stratum radiatum of CA2/3 was observed. The immunostaining in MP4 showed a decrease in the granulare layer from dentate gyrus (20%), in hillus (71%) and subicullum (63%) as compared with control and these decreases were similar at MP7 values. Results showed decreases in NR2B subunit expression in different areas following repeated MP-induce seizures, suggesting that NR2B expression is altered depending on the diverse hippocampal input and output signals of each region that could be differently involved in modulating MP-induced hyperactivity.
Collapse
|
20
|
Lopez J, Roffwarg HP, Dreher A, Bissette G, Karolewicz B, Shaffery JP. Rapid eye movement sleep deprivation decreases long-term potentiation stability and affects some glutamatergic signaling proteins during hippocampal development. Neuroscience 2008; 153:44-53. [PMID: 18359575 PMCID: PMC2389877 DOI: 10.1016/j.neuroscience.2008.01.072] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/03/2008] [Accepted: 01/21/2008] [Indexed: 11/19/2022]
Abstract
Development of the mammalian CNS requires formation and stabilization of neuronal circuits and synaptic connections. Sensory stimulation provided by the environment orchestrates neuronal circuit formation in the waking state. Endogenous sources of activation are also implicated in these processes. Accordingly we hypothesized that sleep, especially rapid eye movement sleep (REMS), the stage characterized by high neuronal activity that is more prominent in development than adulthood, provides endogenous stimulation, which, like sensory input, helps to stabilize and refine neuronal circuits during CNS development. Young (Y: postnatal day (PN) 16) and adolescent (A: PN44) rats were rapid eye movement sleep-deprived (REMSD) by gentle cage-shaking for only 4 h on 3 consecutive days (total 12 h). The effect of REMS deprivation in Y and A rats was tested 3-7 days after the last deprivation session (Y, PN21-25; A, PN49-53) and was compared with younger (immature, I, PN9-12) untreated, age-matched, treated and normal control groups. REMS deprivation negatively affected the stability of long-term potentiation (LTP) in Y but not A animals. LTP instability in Y-REMSD animals was similar to the instability in even the more immature, untreated animals. Utilizing immunoblots, we identified changes in molecular components of glutamatergic synapses known to participate in mechanisms of synaptic refinement and plasticity. Overall, N-methyl-d-aspartate receptor subunit 2B (NR2B), N-methyl-d-aspartate receptor subunit 2A, AMPA receptor subunit 1 (GluR1), postsynaptic density protein 95 (PSD-95), and calcium/calmodulin kinase II tended to be lower in Y REMSD animals (NR2B, GluR1 and PSD-95 were significantly lower) compared with controls, an effect not present in the A animals. Taken together, these data indicate that early-life REMS deprivation reduces stability of hippocampal neuronal circuits, possibly by hindering expression of mature glutamatergic synaptic components. The findings support a role for REMS in the maturation of hippocampal neuronal circuits.
Collapse
Affiliation(s)
- J Lopez
- Department of Psychiatry, University of Mississippi School of Medicine, 2500 N State Street, Jackson, MS 39216, USA
| | | | | | | | | | | |
Collapse
|