1
|
Prauchner GRK, Ramires Junior OV, Rieder AS, Wyse ATS. Mild hyperhomocysteinemia alters oxidative stress profile via Nrf2, inflammation and cholinesterases in cardiovascular system of aged male rats. Chem Biol Interact 2024; 396:111028. [PMID: 38729282 DOI: 10.1016/j.cbi.2024.111028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Homocysteine (Hcy) is an independent cardiovascular disease (CVD) risk factor, whose mechanisms are poorly understood. We aimed to explore mild hyperhomocysteinemia (HHcy) effects on oxidative status, inflammatory, and cholinesterase parameters in aged male Wistar rats (365 days old). Rats received subcutaneous Hcy (0.03 μmol/g body weight) twice daily for 30 days, followed by euthanasia, blood collection and heart dissection 12 h after the last injection. Results revealed increased dichlorofluorescein (DCF) levels in the heart and serum, alongside decreased antioxidant enzyme activities (superoxide dismutase, catalase, glutathione peroxidase), reduced glutathione (GSH) content, and diminished acetylcholinesterase (AChE) activity in the heart. Serum butyrylcholinesterase (BuChE) levels also decreased. Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2) protein content decreased in both cytosolic and nuclear fractions, while cytosolic nuclear factor kappa B (NFκB) p65 increased in the heart. Additionally, interleukins IL-1β, IL-6 and IL-10 showed elevated expression levels in the heart. These findings could suggest a connection between aging and HHcy in CVD. Reduced Nrf2 protein content and impaired antioxidant defenses, combined with inflammatory factors and altered cholinesterases activity, may contribute to understanding the impact of Hcy on cardiovascular dynamics. This study sheds light on the complex interplay between HHcy, oxidative stress, inflammation, and cholinesterases in CVD, providing valuable insights for future research.
Collapse
Affiliation(s)
- Gustavo Ricardo Krupp Prauchner
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, Wyse's Lab, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Osmar Vieira Ramires Junior
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, Wyse's Lab, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Alessandra Schmitt Rieder
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, Wyse's Lab, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, Wyse's Lab, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Zou J, Chen Z, Liang C, Fu Y, Wei X, Lu J, Pan M, Guo Y, Liao X, Xie H, Wu D, Li M, Liang L, Wang P, Wang Q. Trefoil Factor 3, Cholinesterase and Homocysteine: Potential Predictors for Parkinson's Disease Dementia and Vascular Parkinsonism Dementia in Advanced Stage. Aging Dis 2018; 9:51-65. [PMID: 29392081 PMCID: PMC5772858 DOI: 10.14336/ad.2017.0416] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/16/2017] [Indexed: 01/23/2023] Open
Abstract
Trefoil factor 3 (TFF3), cholinesterase activity (ChE activity) and homocysteine (Hcy) play critical roles in modulating recognition, learning and memory in neurodegenerative diseases, such as Parkinson's disease dementia (PDD) and vascular parkinsonism with dementia (VPD). However, whether they can be used as reliable predictors to evaluate the severity and progression of PDD and VPD remains largely unknown. METHODS We performed a cross-sectional study that included 92 patients with PDD, 82 patients with VPD and 80 healthy controls. Serum levels of TFF3, ChE activity and Hcy were measured. Several scales were used to rate the severity of PDD and VPD. Receivers operating characteristic (ROC) curves were applied to map the diagnostic accuracy of PDD and VPD patients compared to healthy subjects. RESULTS Compared with healthy subjects, the serum levels of TFF3 and ChE activity were lower, while Hcy was higher in the PDD and VPD patients. These findings were especially prominent in male patients. The three biomarkers displayed differences between PDD and VPD sub-groups based on genders and UPDRS (III) scores' distribution. Interestingly, these increased serum Hcy levels were significantly and inversely correlated with decreased TFF3/ChE activity levels. There were significant correlations between TFF3/ChE activity/Hcy levels and PDD/VPD severities, including motor dysfunction, declining cognition and mood/gastrointestinal symptoms. Additionally, ROC curves for the combination of TFF3, ChE activity and Hcy showed potential diagnostic value in discriminating PDD and VPD patients from healthy controls. CONCLUSIONS Our findings suggest that serum TFF3, ChE activity and Hcy levels may underlie the pathophysiological mechanisms of PDD and VPD. As the race to find biomarkers or predictors for these diseases intensifies, a better understanding of the roles of TFF3, ChE activity and Hcy may yield insights into the pathogenesis of PDD and VPD.
Collapse
Affiliation(s)
| | | | - Caiqian Liang
- 2Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University, China
| | - Yongmei Fu
- 2Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University, China
| | | | - Jianjun Lu
- 3Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Mengqiu Pan
- 3Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Yue Guo
- 4Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Xinxue Liao
- 4Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, China
| | - Huifang Xie
- 5Department of Neurology, Zhujiang Hospital, Southern Medical University, China
| | - Duobin Wu
- 5Department of Neurology, Zhujiang Hospital, Southern Medical University, China
| | - Min Li
- 6School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Lihui Liang
- 7Department of Geriatric Medicine, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Penghua Wang
- 8Department of Microbiology & Immunology, School of Medicine, New York Medical College, NY 10595, USA
| | | |
Collapse
|
3
|
Tagliari B, dos Santos TM, Cunha AA, Lima DD, Delwing D, Sitta A, Vargas CR, Dalmaz C, Wyse ATS. Chronic variable stress induces oxidative stress and decreases butyrylcholinesterase activity in blood of rats. J Neural Transm (Vienna) 2010; 117:1067-76. [PMID: 20686907 DOI: 10.1007/s00702-010-0445-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/09/2010] [Indexed: 01/01/2023]
Abstract
Depressive disorders, including major depression, are serious and disabling, whose mechanisms are not clearly understood. Since life stressors contribute in some fashion to depression, chronic variable stress (CVS) has been used as an animal model of depression. In the present study we evaluated some parameters of oxidative stress [thiobarbituric acid reactive substances (TBARS), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)], and inflammatory markers (interleukin 6, C reactive protein, tumor necrosis factor-alpha and nitrites), as well as the activity of butyrylcholinesterase in blood of rats subjected to chronic stress. Homocysteine and folate levels also were measured. Stressed animals were submitted to different mild stressors for 40 days. After CVS, a reduction in weight gain was observed in the stressed group, as well as an increase in immobility time in the forced swimming test as compared with controls. Stressed animals presented a significant increase on TBARS and SOD/CAT ratio, but stress did not alter GPx activity and any inflammatory parameters studied. CVS caused a significant inhibition on serum butyrylcholinesterase activity. Stressed rats had higher plasmatic levels of homocysteine without differences in folate levels. Although it is difficult to extrapolate our findings to the human condition, the alterations observed in this work may be useful to help to understand, at least in part, the pathophysiology of depressive disorders.
Collapse
Affiliation(s)
- Bárbara Tagliari
- Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Valentini J, Vicentini J, Grotto D, Tonello R, Garcia SC, Barbosa F. Sub-chronic exposure to methylmercury at low levels decreases butyrylcholinesterase activity in rats. Basic Clin Pharmacol Toxicol 2009; 106:95-9. [PMID: 19874286 DOI: 10.1111/j.1742-7843.2009.00475.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we examined the effects of low levels and sub-chronic exposure to methylmercury (MeHg) on butyrylcholinesterase (BuChE) activity in rats. Moreover, we examined the relationship between BuChE activity and oxidative stress biomarkers [delta-aminolevulinic acid dehydratase (delta-ALA-D) and malondialdehyde levels (MDA)] in the same animals. Rats were separated into three groups (eight animals per group): (Group I) received water by gavage; (Group II) received MeHg (30 microg/kg/day) by gavage; (Group III) received MeHg (100 microg/kg/day). The time of exposure was 90 days. BuChE and ALA-D activities were measured in serum and blood, respectively; whereas MDA levels were measured in plasma. We found BuChE and ALA-D activities decreased in groups II and III compared to the control group. Moreover, we found an interesting negative correlation between plasmatic BuChE activity and MDA (r = -0.85; p < 0.01) and a positive correlation between plasmatic BuChE activity and ALA-D activities (r = 0.78; p < 0.01), thus suggesting a possible relationship between oxidative damage promoted by MeHg exposure and the decrease of BuChE activity. In conclusion, long-term exposure to low doses of MeHg decreases plasmatic BuChE activity. Moreover, the decrease in the enzyme is strongly correlated with the oxidative stress promoted by the metal exposure. This preliminary finding highlights a possible mechanism for MeHg to reduce BuChE activity in plasma. Additionally, this enzyme could be an auxiliary biomarker on the evaluation of MeHg exposure.
Collapse
Affiliation(s)
- Juliana Valentini
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Butyrylcholinesterase activity and mortality risk in hemodialysis patients: Comparison to hsCRP and albumin. Clin Biochem 2009; 42:22-6. [DOI: 10.1016/j.clinbiochem.2008.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 09/26/2008] [Accepted: 10/12/2008] [Indexed: 10/21/2022]
|
6
|
Garcia SC, Wyse ÂT, Valentini J, Roehrs M, Moro AM, Paniz C, Schmitt G, Grotto D, Pomblum VJ. Butyrylcholinesterase activity is reduced in haemodialysis patients: Is there association with hyperhomocysteinemia and/or oxidative stress? Clin Biochem 2008; 41:474-9. [DOI: 10.1016/j.clinbiochem.2008.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 11/28/2007] [Accepted: 01/07/2008] [Indexed: 11/30/2022]
|