1
|
Panicucci C, Casalini S, Fiorito G, Rinaldi AB, Biagioli V, Cangelosi D, Brolatti N, Principi E, Baratto S, Pedemonte M, Morando S, Riva A, Venturino C, Striano P, Uva P, Bruno C. Exploratory Analysis of Gut Microbiota Profile in Duchenne Muscular Dystrophy (DMD) Patients with Intellectual Disability. Mol Neurobiol 2025:10.1007/s12035-025-04974-7. [PMID: 40325330 DOI: 10.1007/s12035-025-04974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
This study investigates the differences in gut microbiota composition between DMD patients with (DMD +) and without (DMD -) intellectual disability (ID) and its potential role in cognitive outcomes. In this study, we assessed the gut microbiota in 50 genetically confirmed DMD patients (median age 13.1 years) using 16S rRNA gene sequencing. Cognitive assessment was performed using the Wechsler Intelligence Scales, with ID defined as an IQ < 70. Stool samples were analyzed, and statistical methods were used to assess alpha- and beta-diversity. Thirty-four percent of patients had ID. No significant differences were found in alpha-diversity or in the Firmicutes/Bacteroidetes ratio. However, beta-diversity analysis revealed significant differences between DMD + and DMD - groups, including, in DMD + , an increased abundance of Propionibacterium and Bifidobacterium, and a reduction in Bulleidia. These bacteria are involved in metabolic pathways that can influence neurological health through the gut-brain axis, particularly via the production of short-chain fatty acids. While these preliminary findings suggest a possible association between gut microbiota profile and cognitive impairment in DMD, further research is needed to explore a causal relationship and consider microbiota-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Panicucci
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sara Casalini
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanni Fiorito
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Valentina Biagioli
- Pediatric Neurology and Muscle Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Davide Cangelosi
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Noemi Brolatti
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisa Principi
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Baratto
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marina Pedemonte
- Pediatric Neurology and Muscle Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simone Morando
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonella Riva
- Pediatric Neurology and Muscle Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Pasquale Striano
- Pediatric Neurology and Muscle Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Claudio Bruno
- Centre of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genoa, Italy.
| |
Collapse
|
2
|
Aman Mohammadi M, Farshi P, Ahmadi P, Ahmadi A, Yousefi M, Ghorbani M, Hosseini SM. Encapsulation of Vitamins Using Nanoliposome: Recent Advances and Perspectives. Adv Pharm Bull 2023; 13:48-68. [PMID: 36721823 PMCID: PMC9871282 DOI: 10.34172/apb.2023.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023] Open
Abstract
Nowadays the importance of vitamins is clear for everyone. However, many patients are suffering from insufficient intake of vitamins. Incomplete intake of different vitamins from food sources due to their destruction during food processing or decrease in their bioavailability when mixing with other food materials, are factors resulting in vitamin deficiency in the body. Therefore, various lipid based nanocarriers such as nanoliposomes were developed to increase the bioavailability of bioactive compounds. Since the function of nanoliposomes containing vitamins on the body has a direct relationship with the quality of produced nanoliposomes, this review study was planned to investigate the several aspects of liposomal characteristics such as size, polydispersity index, zeta potential, and encapsulation efficiency on the quality of synthesized vitamin-loaded nanoliposomes.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Science and Food Technology, Nutritional and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,These authors contributed equally in this Article
| | - Parastou Farshi
- Food Science Institute, Kansas State University, Manhattan KS, USA.,These authors contributed equally in this Article
| | - Parisa Ahmadi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Ahmadi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousefi
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Corresponding Authors: Marjan Ghorbani, Tel: +98 41 33378165, Fax: +98 41 33378165, , and Seyede Marzieh Hosseini, Tel: +98 21 22622322, Fax: +98 21 22622322,
| | - Seyede Marzieh Hosseini
- Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding Authors: Marjan Ghorbani, Tel: +98 41 33378165, Fax: +98 41 33378165, , and Seyede Marzieh Hosseini, Tel: +98 21 22622322, Fax: +98 21 22622322,
| |
Collapse
|
3
|
Hao C, Gao Z, Liu X, Rong Z, Jia J, Kang K, Guo W, Li J. Intravenous administration of sodium propionate induces antidepressant or prodepressant effect in a dose dependent manner. Sci Rep 2020; 10:19917. [PMID: 33199803 PMCID: PMC7670463 DOI: 10.1038/s41598-020-77085-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Propionate has been reported to exert antidepressant effects, but high-dose propionate may induce autism-like symptoms in experimental animals through induction of dysbiosis of neurotransmitters. The bi-directional effects of propionate seem to be dose-dependent. However, due to the pathological discrepancies between depression and autism, conclusions drawn from autism may not be simply transferable to depression. The effect and underlying action mechanisms of high-dose propionate on depression remains undetermined. To investigate the effects of propionate on depression, propionate dose gradients were intravenously administrated to rats exposed to chronic unpredictable mild stress (CUMS) for 1 week. Results of these behavioral tests demonstrate that low-dose propionate (2 mg/kg body weight/day) induces antidepressant effect through bodyweight recovery, elevated reward-seeking behaviors, and reduced depression-like behaviors, while high-dose propionate (200 mg/kg body weight/day) induces prodepressant effects opposite of those of low-dose propionate. A comprehensive profiling of neurotransmitters in the hippocampus demonstrated that CUMS induces reduction of NE (Norepinephrine), DA (Dopamine). GABA (γ-aminobutyric acid) was recovered by low-dose propionate, while high-dose propionate exerted more complicated effects on neurotransmitters, including reduction of NE, DA, 5-Hydroxytryptamine and Tryptophan, and increase of GABA, Kynurenine, Homovanillic acid, 3-hydroxyanthranilic acid, 3-hydroxykynurenine, 3,4-dihydroxyphenylacetic acid, and 3-methoxytyramine. The neurotransmitters disturbed by high-dose propionate suggest metabolic disorders in the hippocampus, which were confirmed by the clear group separation in PCA of metabolomic profiling. The results of this study demonstrate the double-edged dose-dependent effects of propionate on depression and suggest potential cumulative toxicity of propionate as a food additive to mood disorders.
Collapse
Affiliation(s)
- Chunyan Hao
- School of Chemical and Biological Engineering, Taiyuan University of Science & Technology, Taiyuan, 030021, China
| | - Zefeng Gao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92, Wucheng Road, Xiaodian District, TaiyuanShanxi, 030006, China
| | - XianJun Liu
- School of Chemical and Biological Engineering, Taiyuan University of Science & Technology, Taiyuan, 030021, China
| | - Zhijiang Rong
- School of Chemical and Biological Engineering, Taiyuan University of Science & Technology, Taiyuan, 030021, China
| | - Jingjing Jia
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Kaiqi Kang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Weiwei Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jianguo Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92, Wucheng Road, Xiaodian District, TaiyuanShanxi, 030006, China.
| |
Collapse
|
4
|
Al-Suwailem E, Abdi S, Bhat RS, El-Ansary A. Glutamate Signaling Defects in Propionic Acid Orally Administered to Juvenile Rats as an Experimental Animal Model of Autism. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Bjørklund G, Waly MI, Al-Farsi Y, Saad K, Dadar M, Rahman MM, Elhoufey A, Chirumbolo S, Jóźwik-Pruska J, Kałużna-Czaplińska J. The Role of Vitamins in Autism Spectrum Disorder: What Do We Know? J Mol Neurosci 2019; 67:373-387. [PMID: 30607900 DOI: 10.1007/s12031-018-1237-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Vitamin or mineral supplementation is considered to be the most commonly used medical treatment for autism spectrum disorder (ASD), in addition to other interventions such as neurological and psychological interventions. There is not much evidence of therapeutic efficacy between vitamin and mineral supplementation and improvements in ASD. However, several researchers have noted that patients with ASD have various metabolic and nutritional abnormalities including issues with sulfation, methylation, glutathione redox imbalances, oxidative stress, and mitochondrial dysfunction. There is some evidence that vitamin and mineral supplementation may support these basic physiologic processes. Recently, the nutritional status of ASD patients has been gaining focus in this particular area. Pointing out the nutritional status as a potential etiological factor for attention/communication disorders, more importance has been given to this particular point. Moreover, autistic specific considerations like the feature and behavior of ASD might be increased or at least fall in the higher risk due to the sub-optimal nutritional status.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Mostafa I Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Yahya Al-Farsi
- Department of Family Medicine and Public Health, College of Medicine and Health Science, Sultan Qaboos University, Muscat, Oman
| | - Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
- CONEM Upper Egypt Pediatric Research Group, Assiut University, Assiut, Egypt
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Amira Elhoufey
- CONEM Upper Egypt Pediatric Research Group, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| | - Jagoda Jóźwik-Pruska
- Institute of General and Ecological Chemistry, Department of Chemistry, Technical University of Lodz, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Department of Chemistry, Technical University of Lodz, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
6
|
Alfawaz H, Al-Onazi M, Bukhari SI, Binobead M, Othman N, Algahtani N, Bhat RS, Moubayed NMS, Alzeer HS, El-Ansary A. The Independent and Combined Effects of Omega-3 and Vitamin B12 in Ameliorating Propionic Acid Induced Biochemical Features in Juvenile Rats as Rodent Model of Autism. J Mol Neurosci 2018; 66:403-413. [PMID: 30284229 DOI: 10.1007/s12031-018-1186-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Metabolites of proper fatty acids modulate the inflammatory response and are essential for normal brain development; equally, abnormal fatty acid metabolism plays a critical role in the pathology of autism. Currently, dietary supplements are often used to improve the core symptoms of Autism spectrum disorder (ASD). The present study analyzed the effects of orally supplemented omega-3 (ω-3) and vitamin B12 on ameliorating oxidative stress and impaired lipid metabolism in a propionic acid (PPA)-induced rodent model of autism, together with their effect on the gut microbial composition, where great fluctuations in the bacterial number and strains were observed; interestingly, polyunsaturated fatty acids such as omega-3 induced higher growth of the gram-positive bacterium Staphylococcus aureus and decreased the survival rates of Clostridia sp. as well as other enteric bacterial strains. Thirty-five young male western albino rats were divided into five equal groups. The first group served as the control; the second group was given an oral neurotoxic dose of PPA (250 mg/kg body weight/day) for 3 days. The third group received an oral dose of ω-3 (200 mg/kg body weight/day) for 30 days after the 3-day PPA treatment. Group four was given an oral dose of vitamin B12 (16.7 mg/kg/day) for 30 days after PPA treatment. Finally, group five was given a combination of both ω-3 and vitamin B12 at the same dose for the same duration after PPA treatment. Biochemical parameters related to oxidative stress and impaired fatty acid metabolism were investigated in the brain homogenates of each group. The effects of the dietary supplements on the gut microbiota were also observed. The PPA-treated autistic model expressed significantly higher levels of lipid peroxides and 5-lipoxygenase (5-LOX) and significantly less glutathione (GSH), glutathione S-transferase (GST), and cyclooxygenase 2 (COX2) than the control group. However, a remarkable amelioration of most of the impaired markers was observed with oral supplementation with ω-3 and vitamin B12, either alone or in combination. Our results concluded that impairment at various steps of the lipid metabolic pathways may contribute to the development of autism; however, supplementation with ω-3 and vitamin B12 can result in a positive therapeutic effect.
Collapse
Affiliation(s)
- Hanan Alfawaz
- Department of Food Science and Human Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Mona Al-Onazi
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Sarah I Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal Binobead
- Department of Food Science and Human Nutrition, King Saud University, Riyadh, Saudi Arabia
| | - Nashwa Othman
- Central laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Norah Algahtani
- Central laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Nadine M S Moubayed
- Botany and Microbiology Department, College of Science, King Saud University, P.O box 22452, Riyadh, Zip code 11495, Saudi Arabia
| | - Haya S Alzeer
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Fluegge K, Fluegge K. Anesthetic agents, neurodevelopmental risk and the connection to bacterial infections. Microbes Infect 2017; 19:443-448. [PMID: 28666807 DOI: 10.1016/j.micinf.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/05/2017] [Accepted: 06/12/2017] [Indexed: 11/16/2022]
Abstract
This short communication identifies a significant flaw in research investigating the neurodevelopmental consequences of general anesthesia exposure. We have identified that chronic environmental exposure to pervasive air pollutants that are also widely used as anesthetic agents, specifically nitrous oxide (N2O), may contribute to the rising prevalence of neurodevelopmental disorders. Consistent with the emerging link between microbes and psychiatric illness risk, this epidemiological analysis extends our prior conclusions by proposing that such exposures may alter host immunity so as to enhance vulnerability to certain pathogenic microbes that have been implicated in neurodevelopmental disorders, including Pseudomonas aeruginosa and Clostridium difficile.
Collapse
Affiliation(s)
- Keith Fluegge
- Institute of Health and Environmental Research, Cleveland, OH 44118, USA.
| | - Kyle Fluegge
- Institute of Health and Environmental Research, Cleveland, OH 44118, USA; New York City Department of Health and Mental Hygiene, New York 11101-4132, USA
| |
Collapse
|
8
|
El-Ansary A, Al-Salem HS, Asma A, Al-Dbass A. Glutamate excitotoxicity induced by orally administered propionic acid, a short chain fatty acid can be ameliorated by bee pollen. Lipids Health Dis 2017; 16:96. [PMID: 28532421 PMCID: PMC5440900 DOI: 10.1186/s12944-017-0485-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rodent models may guide investigations towards identifying either environmental neuro-toxicants or drugs with neuro-therapeutic effects. This work aims to study the therapeutic effects of bee pollen on brain glutamate excitotoxicity and the impaired glutamine-glutamate- gamma amino butyric acid (GABA) circuit induced by propionic acid (PPA), a short chain fatty acid, in rat pups. METHODS Twenty-four young male Western Albino rats 3-4 weeks of age, and 45-60 g body weight were enrolled in the present study. They were grouped into four equal groups: Group 1, the control received phosphate buffered saline at the same time of PPA adminstration; Group 2, received 750 mg/kg body weight divided into 3 equal daily doses and served as acute neurotoxic dose of PPA; Group 3, received 750 mg/kg body weight divided in 10 equal doses of 75 mg/kg body weight/day, and served as the sub-acute group; and Group 4, the therapeutic group, was treated with bee pollen (50 mg/kg body weight) for 30 days after acute PPA intoxication. GABA, glutamate and glutamine were measured in the brain homogenates of the four groups. RESULTS The results showed that PPA caused multiple signs of excitotoxicity, as measured by the elevation of glutamate and the glutamate/glutamine ratio and the decrease of GABA, glutamine and the GABA/glutamate ratio. Bee pollen was effective in counteracting the neurotoxic effects of PPA to a certain extent. CONCLUSION In conclusion, bee pollen demonstrates ameliorating effects on glutamate excitotoxicity and the impaired glutamine-glutamate-GABA circuit as two etiological mechanisms in PPA-induced neurotoxicity.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh, Saudi Arabia. .,Autism Research and Treatment Center, Riyadh, Saudi Arabia. .,Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia. .,Medicinal Chemistry Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Huda S Al-Salem
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alqahtani Asma
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Al-Dbass
- Department of Biochemistry, Science College, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|