1
|
Farber C, Renteria K, Ritter J, Muraida JD, Rivers C, McKenzie A, Zhu J, Koh GY, Lane MA. Comparison of maternal versus postweaning ingestion of a high fat, high sucrose diet on depression-related behavior, novelty reactivity, and corticosterone levels in young, adult rat offspring. Behav Brain Res 2023; 455:114677. [PMID: 37734488 DOI: 10.1016/j.bbr.2023.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
Consumption of a Western-type diet, high in fat and sugar, by mothers as well as maternal weight gain and obesity during gestation and lactation may impact offspring risk for mood and cognitive disorders. The objective of this study was to determine if ingestion of a high fat, high sucrose (HFS) diet by rat dams during gestation and lactation or by their pups after weaning impacted these behaviors and stress responsivity in young, adult offspring. To accomplish this, dams consumed either a 45% fat/high sucrose (HFS) diet or the AIN93G control diet during gestation and lactation. At weaning, pups from dams that consumed the HFS diet were weaned to the control diet. Pups from dams assigned to the control diet were weaned to either the control or HFS diet. Pup behavioral testing began at 10 weeks of age. Pups whose dams consumed the HFS diet during gestation and lactation exhibited increased depression-related behavior and baseline serum corticosterone levels, but no difference in peak levels in response to stress. Male pups of these dams displayed increased working memory during acquisition of the holeboard task and tended to exhibit more anxiety-related behavior in the elevated O-maze test. Regardless of when consumed, the HFS diet increased novelty reactivity in the open field test. These data indicate that diet but not maternal weight gain during gestation impacts offspring behavior and elevates stress hormone levels. Also, regardless of when consumed, the HFS diet increases novelty reactivity, a risk factor for depression and addiction.
Collapse
Affiliation(s)
- Christopher Farber
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Karisa Renteria
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Jordan Ritter
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - J D Muraida
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Carley Rivers
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Avery McKenzie
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Jie Zhu
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Gar Yee Koh
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Michelle A Lane
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States.
| |
Collapse
|
2
|
Amaro A, Sousa D, Sá-Rocha M, Ferreira-Júnior MD, Barra C, Monteiro T, Mathias P, Gomes RM, Baptista FI, Matafome P. Sex-specificities in offspring neurodevelopment and behaviour upon maternal glycation: Putative underlying neurometabolic and synaptic changes. Life Sci 2023; 321:121597. [PMID: 36948389 DOI: 10.1016/j.lfs.2023.121597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
AIM Lactation is an important programming window for metabolic disease and neuronal alterations later in life. We aimed to study the effect of maternal glycation during lactation on offspring neurodevelopment and behaviour, assessing possible sex differences and underpinning molecular players. METHODS Female Wistar rats were treated with the Glyoxalase-1 inhibitor S-p-Bromobenzylguthione cyclopentyl diester (BBGC 5 mg/kg). A control and vehicle group treated with dimethyl sulfoxide were considered. Male and female offspring were tested at infancy for neurodevelopment hallmarks. After weaning, triglycerides and total antioxidant capacity were measured in breast milk. At adolescence, offspring were tested for locomotor ability, anxious-like behaviour, and recognition memory. Metabolic parameters were assessed, and the hippocampus and prefrontal cortex were collected for molecular analysis. KEY FINDINGS Maternal glycation reduced triglycerides and total antioxidant capacity levels in breast milk. At infancy, both male and female offspring presented an anticipation on the achievement of neurodevelopmental milestones. At adolescence, male offspring exposed to maternal glycation presented hyperlocomotion, whereas offspring of both sexes presented a risk-taking phenotype, accompanied by GABAA receptor upregulation in the hippocampus. Females also demonstrated GABAA and PSD-95 changes in prefrontal cortex. Furthermore, lower levels of GLO1 and consequently higher accumulation of AGES were also observed in both male and female offspring hippocampus. SIGNIFICANCE Early exposure to maternal glycation induces changes in milk composition leading to neurodevelopment changes at infancy, and sex-specific behavioural and neurometabolic changes at adolescence, further evidencing that lactation period is a critical metabolic programming window and in sculpting behaviour.
Collapse
Affiliation(s)
- Andreia Amaro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Diana Sousa
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Mariana Sá-Rocha
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Marcos D Ferreira-Júnior
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal
| | - Cátia Barra
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Tamaeh Monteiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Mathias
- Department of Physiological Sciences (DCiF), Institute of Biological Sciences, University Federal of Goiás (UFG), Goiânia, Brazil
| | - Rodrigo Mello Gomes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cellular Biology, State University of Maringá, Maringá, Brazil
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Clinical-Academic Center of Coimbra (CACC), Coimbra, Portugal; Polytechnic Institute of Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal.
| |
Collapse
|
3
|
Cruz-Carrillo G, Trujillo-Villarreal LA, Ángeles-Valdez D, Concha L, Garza-Villarreal EA, Camacho-Morales A. Prenatal Cafeteria Diet Primes Anxiety-like Behavior Associated to Defects in Volume and Diffusion in the Fimbria-fornix of Mice Offspring. Neuroscience 2023; 511:70-85. [PMID: 36592924 DOI: 10.1016/j.neuroscience.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/25/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
Prenatal exposure to high-energy diets primes brain alterations that increase the risk of developing behavioral and cognitive failures. Alterations in the structure and connectivity of brain involved in learning and memory performance are found in adult obese murine models and in humans. However, the role of prenatal exposure to high-energy diets in the modulation of the brain's structure and function during cognitive decline remains unknown. We used female C57BL6 mice (n = 10) exposed to a high-energy diets (Cafeteria diet (CAF)) or Chow diet for 9 weeks (before, during and after pregnancy) to characterize their effect on brain structural organization and learning and memory performance in the offspring at two-month-old (n = 17). Memory and learning performance were evaluated using the Y-maze test including forced and spontaneous alternation, novel object recognition (NORT), open field and Barnes maze tests. We found no alterations in the short- or long-time spatial memory performance in male offspring prenatally exposed to CAF diet when compared to the control, but they increased time spent in the edges resembling anxiety-like behavior. By using deformation-based morphometry and diffusion tensor imaging analysis we found that male offspring exposed to CAF diet showed increased volume in primary somatosensory cortex and a reduced volume of fimbria-fornix, which correlate with alterations in its white matter integrity. Biological modeling revealed that prenatal exposure to CAF diet predicts low volume in the fimbria-fornix, which was associated with anxiety in the offspring. The findings suggest that prenatal exposure to high-energy diets prime brain structural alterations related to anxiety in the offspring.
Collapse
Affiliation(s)
- Gabriela Cruz-Carrillo
- Universidad Autónoma de Nuevo Leon, College of Medicine, Department of Biochemistry, Monterrey, NL, Mexico; Universidad Autónoma de Nuevo Leon, Center for Research and Development in Health Sciences, Neurometabolism Unit, San Nicolás de los Garza, NL, Mexico
| | - Luis Angel Trujillo-Villarreal
- Universidad Autónoma de Nuevo Leon, College of Medicine, Department of Biochemistry, Monterrey, NL, Mexico; Universidad Autónoma de Nuevo Leon, Center for Research and Development in Health Sciences, Neurometabolism Unit, San Nicolás de los Garza, NL, Mexico
| | - Diego Ángeles-Valdez
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Departamento de Neurobiología Conductual y Cognitiva, Campus UNAM-Juriquilla, 76230 Queretaro, Mexico
| | - Luis Concha
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Departamento de Neurobiología Conductual y Cognitiva, Campus UNAM-Juriquilla, 76230 Queretaro, Mexico
| | - Eduardo A Garza-Villarreal
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Departamento de Neurobiología Conductual y Cognitiva, Campus UNAM-Juriquilla, 76230 Queretaro, Mexico
| | - Alberto Camacho-Morales
- Universidad Autónoma de Nuevo Leon, College of Medicine, Department of Biochemistry, Monterrey, NL, Mexico; Universidad Autónoma de Nuevo Leon, Center for Research and Development in Health Sciences, Neurometabolism Unit, San Nicolás de los Garza, NL, Mexico.
| |
Collapse
|
4
|
Amaro A, Baptista FI, Matafome P. Programming of future generations during breastfeeding: The intricate relation between metabolic and neurodevelopment disorders. Life Sci 2022; 298:120526. [DOI: 10.1016/j.lfs.2022.120526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
|
5
|
Gastiazoro MP, Rossetti MF, Schumacher R, Stoker C, Durando M, Zierau O, Ramos JG, Varayoud J. Epigenetic disruption of placental genes by chronic maternal cafeteria diet in rats. J Nutr Biochem 2022; 106:109015. [DOI: 10.1016/j.jnutbio.2022.109015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
|
6
|
Jantsch J, Tassinari ID, Giovenardi M, Bambini-Junior V, Guedes RP, de Fraga LS. Mood Disorders Induced by Maternal Overnutrition: The Role of the Gut-Brain Axis on the Development of Depression and Anxiety. Front Cell Dev Biol 2022; 10:795384. [PMID: 35155424 PMCID: PMC8826230 DOI: 10.3389/fcell.2022.795384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Since the first evidence suggesting that maternal nutrition can impact the development of diseases in the offspring, much has been elucidated about its effects on the offspring’s nervous system. Animal studies demonstrated that maternal obesity can predispose the offspring to greater chances of metabolic and neurodevelopmental diseases. However, the mechanisms underlying these responses are not well established. In recent years, the role of the gut-brain axis in the development of anxiety and depression in people with obesity has emerged. Studies investigating changes in the maternal microbiota during pregnancy and also in the offspring demonstrate that conditions such as maternal obesity can modulate the microbiota, leading to long-term outcomes in the offspring. Considering that maternal obesity has also been linked to the development of psychiatric conditions (anxiety and depression), the gut-brain axis is a promising target to be further explored in these neuropsychiatric contexts. In the present study, we review the relationship between maternal obesity and anxious and depressive features, exploring the gut-brain axis as a potential mechanism underlying this relationship.
Collapse
Affiliation(s)
- Jeferson Jantsch
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Isadora D’Ávila Tassinari
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Márcia Giovenardi
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire (UCLan), Preston, United Kingdom
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- *Correspondence: Luciano Stürmer de Fraga,
| |
Collapse
|
7
|
Peleg-Raibstein D. Understanding the Link Between Maternal Overnutrition, Cardio-Metabolic Dysfunction and Cognitive Aging. Front Neurosci 2021; 15:645569. [PMID: 33716660 PMCID: PMC7953988 DOI: 10.3389/fnins.2021.645569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity has long been identified as a global epidemic with major health implications such as diabetes and cardiovascular disease. Maternal overnutrition leads to significant health issues in industrial countries and is one of the risk factors for the development of obesity and related disorders in the progeny. The wide accessibility of junk food in recent years is one of the major causes of obesity, as it is low in nutrient content and usually high in salt, sugar, fat, and calories. An excess of nutrients during fetal life not only has immediate effects on the fetus, including increased growth and fat deposition in utero, but also has long-term health consequences. Based on human studies, it is difficult to discern between genetic and environmental contributions to the risk of disease in future generations. Consequently, animal models are essential for studying the impact of maternal overnutrition on the developing offspring. Recently, animal models provided some insight into the physiological mechanisms that underlie developmental programming. Most of the studies employed thus far have focused only on obesity and metabolic dysfunctions in the offspring. These studies have advanced our understanding of how maternal overnutrition in the form of high-fat diet exposure can lead to an increased risk of obesity in the offspring, but many questions remain open. How maternal overnutrition may increase the risk of developing brain pathology such as cognitive disabilities in the offspring and increase the risk to develop metabolic disorders later in life? Further, does maternal overnutrition exacerbate cognitive- and cardio-metabolic aging in the offspring?
Collapse
Affiliation(s)
- Daria Peleg-Raibstein
- Laboratory of Neurobehavioural Dynamics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
8
|
Lalanza JF, Snoeren EMS. The cafeteria diet: A standardized protocol and its effects on behavior. Neurosci Biobehav Rev 2020; 122:92-119. [PMID: 33309818 DOI: 10.1016/j.neubiorev.2020.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Obesity is a major health risk, with junk food consumption playing a central role in weight gain, because of its high palatability and high-energy nutrients. The Cafeteria (CAF) diet model for animal experiments consists of the same tasty but unhealthy food products that people eat (e.g. hot dogs and muffins), and considers variety, novelty and secondary food features, such as smell and texture. This model, therefore, mimics human eating patterns better than other models. In this paper, we systematically review studies that have used a CAF diet in behavioral experiments and propose a standardized CAF diet protocol. The proposed diet is ad libitum and voluntary; combines different textures, nutrients and tastes, including salty and sweet products; and it is rotated and varied. Our summary of the behavioral effects of CAF diet show that it alters meal patterns, reduces the hedonic value of other rewards, and tends to reduce stress and spatial memory. So far, no clear effects of CAF diet were found on locomotor activity, impulsivity, coping and social behavior.
Collapse
Affiliation(s)
- Jaume F Lalanza
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Eelke M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway; Regional Health Authority of North Norway, Norway.
| |
Collapse
|
9
|
Csongová M, Renczés E, Šarayová V, Mihalovičová L, Janko J, Gurecká R, Troise AD, Vitaglione P, Šebeková K. Maternal Consumption of a Diet Rich in Maillard Reaction Products Accelerates Neurodevelopment in F1 and Sex-Dependently Affects Behavioral Phenotype in F2 Rat Offspring. Foods 2019; 8:foods8050168. [PMID: 31108957 PMCID: PMC6560437 DOI: 10.3390/foods8050168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
Thermal processing of foods at temperatures > 100 °C introduces considerable amounts of advanced glycation end-products (AGEs) into the diet. Maternal dietary exposure might affect the offspring early development and behavioral phenotype in later life. In a rat model, we examined the influence of maternal (F0) dietary challenge with AGEs-rich diet (AGE-RD) during puberty, pregnancy and lactation on early development, a manifestation of physiological reflexes, and behavioral phenotype of F1 and F2 offspring. Mean postnatal day of auditory conduit and eye opening, or incisor eruption was not affected by F0 diet significantly. F1 AGE-RD offspring outperformed their control counterparts in hind limb placing, in grasp tests and surface righting; grandsons of AGE-RD dams outperformed their control counterparts in hind limb placing and granddaughters in surface righting. In a Morris water maze, female AGE-RD F1 and F2 offspring presented better working memory compared with a control group of female offspring. Furthermore, male F2 AGE-RD offspring manifested anxiolysis-like behavior in a light dark test. Mean grooming time in response to sucrose splash did not differ between dietary groups. Our findings indicate that long-term maternal intake of AGE-RD intergenerationally and sex-specifically affects development and behavioral traits of offspring which have never come into direct contact with AGE-RD.
Collapse
Affiliation(s)
- Melinda Csongová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia.
| | - Emese Renczés
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia.
| | - Veronika Šarayová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia.
- Department of Biology, Faculty of Medicine, Slovak Medical University, 83303 Bratislava, Slovakia.
| | - Lucia Mihalovičová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia.
| | - Jakub Janko
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia.
| | - Radana Gurecká
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia.
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia.
| | - Antonio Dario Troise
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 81108 Bratislava, Slovakia.
| |
Collapse
|
10
|
Perinatal Nutrition and Programmed Risk for Neuropsychiatric Disorders: A Focus on Animal Models. Biol Psychiatry 2019; 85:122-134. [PMID: 30293647 PMCID: PMC6309477 DOI: 10.1016/j.biopsych.2018.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/02/2023]
Abstract
Maternal nutrition is critically important for fetal development. Recent human studies demonstrate a strong connection between diet during pregnancy and offspring risk for neuropsychiatric disorders including depression, anxiety, and attention-deficit/hyperactivity disorder. Animal models have emerged as a crucial tool for understanding maternal nutrition's contribution to prenatal programming and the later development of neuropsychiatric disorders. This review highlights preclinical studies examining how maternal consumption of the three macronutrients (protein, fats, and carbohydrates) influence offspring negative-valence behaviors relevant to neuropsychiatric disorders. We highlight the translational aspects of animal models and so examine exposure periods that mirror the neurodevelopmental stages of human gestation. Because of our emphasis on programmed changes in neurobehavioral development, studies that continue diet exposure until assessment in adulthood are not discussed. The presented research provides a strong foundation of preclinical evidence of nutritional programming of neurobehavioral impairments. Alterations in risk assessment and response were observed alongside neurodevelopmental impairments related to neurogenesis, synaptogenesis, and synaptic plasticity. To date, the large majority of studies utilized rodent models, and the field could benefit from additional study of large-animal models. Additional future directions are discussed, including the need for further studies examining how sex as a biological variable affects the contribution of maternal nutrition to prenatal programming.
Collapse
|