1
|
Rao O, Li S, Zhu N, Zhou H, Tao J, Li Y, Liu Y. 6-shogaol alleviates excessive neuronal autophagy and calcium overload following cerebral ischemia-reperfusion injury by inhibiting the expression of DAPK1. Neuroscience 2025; 573:74-84. [PMID: 40107601 DOI: 10.1016/j.neuroscience.2025.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is the primary pathological mechanism of ischemic stroke, leading to neuronal damage and triggering a series of pathological changes. This study investigates the neuroprotective effects and underlying mechanisms of 6-shogaol (6-SH) in CIRI. By establishing an in vitro OGD/R model and a rat cerebral ischemia-reperfusion model, we found that 6-SH significantly improved neuronal viability, alleviated pathological damage, and reduced autophagosome formation. Additionally, 6-SH treatment markedly inhibited the expression of DAPK1, decreased intracellular calcium ion concentration, and mitigated excessive autophagy. Mechanistic studies indicated that 6-SH reduces neuronal injury induced by CIRI by modulating DAPK1 phosphorylation and inhibiting its activity. This discovery provides a theoretical basis for considering 6-SH as a potential neuroprotective agent and offers new insights for clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ouyang Rao
- Clinical Medicine School of Guizhou Medical University, Guiyang 550001, Guizhou, China
| | - Shixin Li
- Clinical Medicine School of Guizhou Medical University, Guiyang 550001, Guizhou, China
| | - Ning Zhu
- Clinical Medicine School of Guizhou Medical University, Guiyang 550001, Guizhou, China
| | - Hangxiang Zhou
- Clinical Medicine School of Guizhou Medical University, Guiyang 550001, Guizhou, China
| | - Junling Tao
- The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou, China
| | - Yehong Li
- The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou, China
| | - Ying Liu
- Clinical Medicine School of Guizhou Medical University, Guiyang 550001, Guizhou, China; The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou, China.
| |
Collapse
|
2
|
Orimoto A, Wang Z, Ono M, Kitamura C, Ono K. Gene expression profiles in human dental pulp stem cells treated short-term with lipopolysaccharides before and after osteoinduction. J Oral Biosci 2025; 67:100603. [PMID: 39710093 DOI: 10.1016/j.job.2024.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES Dental pulp stem cells (DPSCs) are essential for reparative dentinogenesis following damage or infection. DPSCs surrounding theblood vessels in the central region of the dental pulp actively proliferate after tooth injury and differentiate into new odontoblast-like cells or odontoblasts to form reparative dentin. However, the signaling pathways involved in undifferentiated and osteodifferentiated DPSCs under inflammatory conditions remain unclear. This study aimed to compare the expression profiles of immortalized undifferentiated and osteo-differentiated human DPSCs (hDPSCs) treated with and without lipopolysaccharide (LPS) to elucidate the molecular regulatory mechanisms involved in inflammatory conditions. METHODS We investigated the differences between undifferentiated and osteodifferentiated hDPSCs in response to LPS. RNA-seq analyses of undifferentiated and osteodifferentiated hDPSCs were performed with and without LPS. RESULTS Whole-transcriptome profiling revealed distinct differences in the expression patterns of LPS-treated undifferentiated and osteodifferentiated DPSCs. Death-associated protein kinase 1 levels downregulated in LPS-treated osteodifferentiated cells, inhibiting apoptosis and enhancing cell survival After LPS treatment, osteodifferentiated DPSCs exhibited higher expression levels of various inflammatory cytokines and chemokines than undifferentiated DPSCs. CONCLUSION This study provides valuable transcriptomic data as a critical resource for uncovering potential therapeutic targets to enhance cell survival and regulate inflammation within the dental pulp. By elucidating the key molecular mechanisms and identifying specific gene expression changes linked to inflammatory and immune responses, these findings provide significant insights into osteo-differentiated hDPSCs.
Collapse
Affiliation(s)
- Ai Orimoto
- Division of Endodontics and Restorative Dentistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuaki Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
3
|
Sengking J, Mahakkanukrauh P. The underlying mechanism of calcium toxicity-induced autophagic cell death and lysosomal degradation in early stage of cerebral ischemia. Anat Cell Biol 2024; 57:155-162. [PMID: 38680098 PMCID: PMC11184419 DOI: 10.5115/acb.24.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024] Open
Abstract
Cerebral ischemia is the important cause of worldwide disability and mortality, that is one of the obstruction of blood vessels supplying to the brain. In early stage, glutamate excitotoxicity and high level of intracellular calcium (Ca2+) are the major processes which can promote many downstream signaling involving in neuronal death and brain tissue damaging. Moreover, autophagy, the reusing of damaged cell organelles, is affected in early ischemia. Under ischemic conditions, autophagy plays an important role to maintain energy of the brain and its function. In the other hand, over intracellular Ca2+ accumulation triggers excessive autophagic process and lysosomal degradation leading to autophagic process impairment which finally induce neuronal death. This article reviews the association between intracellular Ca2+ and autophagic process in acute stage of ischemic stroke.
Collapse
Affiliation(s)
- Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence in Osteology Research and Training Center (ORTC), Chaing Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Ghosh P, Singh R, Ganeshpurkar A, Swetha R, Kumar D, Singh SK, Kumar A. Identification of potential death-associated protein kinase-1 (DAPK1) inhibitors by an integrated ligand-based and structure-based computational drug design approach. J Biomol Struct Dyn 2023; 41:10785-10797. [PMID: 36576199 DOI: 10.1080/07391102.2022.2158935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin (Ca2+/CaM)-dependent serine/threonine kinase that is abundantly expressed in the memory- and cognition-related brain areas. DAPK1 is associated with several pathological hallmarks of Alzheimer's disease (AD); it is an attractive target for designing a novel DAPK1 inhibitor as an effective therapeutic treatment for AD. In the present study, we have used an integrated ligand-based and structure-based drug design method to identify DAPK1 inhibitors. The pharmacophoric features of compound 38 G (PDB ID 4TXC) were mapped, and the models were evaluated using enrichment factor (EF) and goodness of hit (GH) score. The selected models were used to screen Zinc 15 compounds library. The identified hits were passed through drug-likeliness and PAINS filtering. The docking study was performed in three steps to yield molecules with good binding energy and ligand-target interactions. Finally, three hits were obtained, that is, ZINC000020648330, ZINC000006755051 and ZINC000020650468, which were subjected to rigorous molecular dynamics simulation. All three hits exhibited optimal stability under simulated conditions and low predicted toxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Ganeshpurkar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Devendra Kumar
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
5
|
Li R, Zhi S, Lan G, Chen X, Zheng X, Hu L, Wang L, Zhang T, Lee TH, Rao S, Chen D. Ablation of Death-Associated Protein Kinase 1 Changes the Transcriptomic Profile and Alters Neural-Related Pathways in the Brain. Int J Mol Sci 2023; 24:ijms24076542. [PMID: 37047515 PMCID: PMC10095516 DOI: 10.3390/ijms24076542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Death-associated protein kinase 1 (DAPK1), a Ca2+/calmodulin-dependent serine/threonine kinase, mediates various neuronal functions, including cell death. Abnormal upregulation of DAPK1 is observed in human patients with neurological diseases, such as Alzheimer’s disease (AD) and epilepsy. Ablation of DAPK1 expression and suppression of DAPK1 activity attenuates neuropathology and behavior impairments. However, whether DAPK1 regulates gene expression in the brain, and whether its gene profile is implicated in neuronal disorders, remains elusive. To reveal the function and pathogenic role of DAPK1 in neurological diseases in the brain, differential transcriptional profiling was performed in the brains of DAPK1 knockout (DAPK1-KO) mice compared with those of wild-type (WT) mice by RNA sequencing. We showed significantly altered genes in the cerebral cortex, hippocampus, brain stem, and cerebellum of both male and female DAPK1-KO mice compared to those in WT mice, respectively. The genes are implicated in multiple neural-related pathways, including: AD, Parkinson’s disease (PD), Huntington’s disease (HD), neurodegeneration, glutamatergic synapse, and GABAergic synapse pathways. Moreover, our findings imply that the potassium voltage-gated channel subfamily A member 1 (Kcna1) may be involved in the modulation of DAPK1 in epilepsy. Our study provides insight into the pathological role of DAPK1 in the regulatory networks in the brain and new therapeutic strategies for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Ruomeng Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China (T.H.L.)
| | - Shuai Zhi
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Guihua Lan
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China (T.H.L.)
| | - Xiaotong Chen
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Xiuzhi Zheng
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China (T.H.L.)
| | - Li Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China (T.H.L.)
| | - Long Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China (T.H.L.)
| | - Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China (T.H.L.)
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China (T.H.L.)
| | - Shitao Rao
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Correspondence: (S.R.); or (D.C.); Tel.: +86-591-8356-9250 (S.R.); +86-591-2286-2498 (D.C.)
| | - Dongmei Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China (T.H.L.)
- Correspondence: (S.R.); or (D.C.); Tel.: +86-591-8356-9250 (S.R.); +86-591-2286-2498 (D.C.)
| |
Collapse
|
6
|
Zhang L, Luo B, Lu Y, Chen Y. Targeting Death-Associated Protein Kinases for Treatment of Human Diseases: Recent Advances and Future Directions. J Med Chem 2023; 66:1112-1136. [PMID: 36645394 DOI: 10.1021/acs.jmedchem.2c01606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The death-associated protein kinase (DAPK) family is a member of the calcium/calmodulin-regulated serine/threonine protein kinase family, and studies have shown that its role, as its name suggests, is mainly to regulate cell death. The DAPK family comprises five members, including DAPK1, DAPK2, DAPK3, DRAK1 and DRAK2, which show high homology in the common N-terminal kinase domain but differ in the extra-catalytic domain. Notably, previous research has suggested that the DAPK family plays an essential role in both the development and regulation of human diseases. However, only a few small-molecule inhibitors have been reported. In this Perspective, we mainly discuss the structure, biological function, and role of DAPKs in diseases and the currently discovered small-molecule inhibitors, providing valuable information for the development of the DAPK field.
Collapse
Affiliation(s)
- Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Boqin Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Noori T, Shirooie S, Sureda A, Sobarzo-Sanchez E, Dehpour AR, Saldías M, Akkol EK. Regulation of DAPK1 by Natural Products: An Important Target in Treatment of Stroke. Neurochem Res 2022; 47:2142-2157. [PMID: 35674928 DOI: 10.1007/s11064-022-03628-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
Stroke is a sudden neurological disorder that occurs due to impaired blood flow to an area of the brain. Stroke can be caused by the blockage or rupture of a blood vessel in the brain, called ischemic stroke and hemorrhagic stroke, respectively. Stroke is more common in men than women. Atrial fibrillation, hypertension, kidney disease, high cholesterol and lipids, genetic predisposition, inactivity, poor nutrition, diabetes mellitus, family history and smoking are factors that increase the risk of stroke. Restoring blood flow by repositioning blocked arteries using thrombolytic agents or endovascular therapy are the most effective treatments for stroke. However, restoring circulation after thrombolysis can cause fatal edema or intracranial hemorrhage, and worsen brain damage in a process known as ischemia-reperfusion injury. Therefore, there is a pressing need to find and develop more effective treatments for stroke. In the past, the first choice of treatment was based on natural compounds. Natural compounds are able to reduce the symptoms and reduce various diseases including stroke that attract the attention of the pharmaceutical industry. Nowadays, as a result of the numerous studies carried out in the field of herbal medicine, many useful and valuable effects of plants have been identified. The death-associated protein kinase (DAPK) family is one of the vital families of serine/threonine kinases involved in the regulation of some biological functions in human cells. DAPK1 is the most studied kinase within the DAPKs family as it is involved in neuronal and recovery processes. Dysregulation of DAPK1 in the brain is involved in the developing neurological diseases such as stroke. Natural products can function in a variety of ways, including reducing cerebral edema, reducing brain endothelial cell death, and inhibiting TNFα and interleukin-1β (IL-1β) through regulating the DAPK1 signal against stroke. Due to the role of DAPK1 in neurological disorders, the aim of this article was to investigate the role of DAPK1 in stroke and its modulation by natural compounds.
Collapse
Affiliation(s)
- Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, 07122, Palma de Mallorca, Balearic Islands, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marianela Saldías
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey
| |
Collapse
|
8
|
Liu H, Zhang L, Li M, Zhao F, Lu F, Zhang F, Chen S, Guo J, Zhang R, Yin H. Bone mesenchymal stem cell-derived extracellular vesicles inhibit DAPK1-mediated inflammation by delivering miR-191 to macrophages. Biochem Biophys Res Commun 2022; 598:32-39. [PMID: 35151201 DOI: 10.1016/j.bbrc.2022.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022]
Abstract
Alveolar macrophage activation and apoptosis are vital contributors to sepsis-associated acute lung injury (ALI). However, the mechanisms of alveolar macrophage activation are yet to be clarified. Death-associated protein kinase 1 (DAPK1) is one of the potential candidates that play crucial roles in regulating alveolar macrophage inflammation. Herein, we found that primary human bone mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) antagonize LPS-induced inflammation in the THP-1 human macrophage-like cell line. Mechanistically, LPS stimulation elevates the expression of DAPK1 and the inflammation markers in THP-1 cells, while BMSC-derived EVs inhibit the expression of DAPK1 and inflammation through delivering miR-191, which can target the 3'-UTR of the DAPK1 mRNA and therefore suppress its translation. The importance of DAPK1 in the activation of THP-1 is also stressed in this study. Our findings provide evidence that BMSC-derived EVs regulate the alveolar macrophage inflammation and highlight BMSC-derived EVs as a potential vehicle to deliver biomacromolecules to macrophages.
Collapse
Affiliation(s)
- Hui Liu
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China; Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong Province, China
| | - Luming Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Meilian Li
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Fengzhi Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Fan Lu
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Feng Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Sida Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Juntao Guo
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Rui Zhang
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, Guangdong Province, China.
| | - Hanyan Yin
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
9
|
Khan ZA, Sumsuzzman DM, Choi J, Hong Y. Neurodegenerative effect of DAPK1 after cerebral hypoxia-ischemia is associated with its post-transcriptional and signal transduction regulations: A systematic review and meta-analysis. Ageing Res Rev 2022; 76:101593. [PMID: 35202858 DOI: 10.1016/j.arr.2022.101593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 01/07/2023]
Abstract
Cerebral hypoxia-ischemia (CHI) causes brain aging, neurological disorders, cognitive decline, motor function impairment, and mortality. Inhibiting death-associated protein kinase 1 (DAPK1) has shown therapeutic potential against CHI, but several reports contradict its protective function, mechanism of activation, and signal transduction. Here, we systematically reviewed the role and the activation mechanism of DAPK1, and quantitatively assess the efficacy of DAPK1 inhibition (DI) methods in neuroprotection, following a CHI in animal models. Embase and PubMed were searched for relevant studies. Overall, 13 studies met the inclusion criteria, and the SYRCLE Risk of bias tool (RoB) tool was used to assess RoB. StataSE 16 was used for meta-analysis and network meta-analysis (NMA). Standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated to estimate the effect size. DI was associated with the reduction of brain infarct volume (BIV) [SMD = -1.70, 95% CI (-2.10, -1.30); p = 0.00], neurological score (N.S.), neuronal degeneration, with no change in the level of in cell death [SMD = -0.83, 95% CI (-2.00, 0.35); p = 0.17], indicating the protective role of DI against CHI. No differences were found in DAPK1 mRNA and protein levels [SMD = 0.50, 95% CI (-0.05, 1.04); p = 0.07] {single-study driven; upregulated after exclusion (p = 0.01, I2 = 36.43)}, whereas phospho-DAPK1 [SMD = -2.22, 95% CI (-3.69, -0.75); p = 0.00] was downregulated and phosphorylated myosin light chain [SMD = 3.37, 95% CI (2.51, 4.96); p = 0.00] was upregulated between CHI and sham groups. Furthermore, we performed NMA to understand the molecular level at which DI offers maximum protection against BIV. Post-transcriptional inhibition (PTI; SUCRA, 82.6%) and gene knockout showed best (KO; SUCRA, 81.3%), signal transduction inhibition (STI; SUCRA, 49.5%) offered 3rd best, while catalytic activity inhibition (CAI; SUCRA, 0.3%) exhibited the lowest reduction in BIV against CHI. The results demonstrate that DI has a neuroprotective effect against CHI and DAPK1 might be regulated at the post-transcriptional and post-translational levels after CHI. Inhibiting DAPK1 at the post-transcriptional level and blocking multiple signal transduction pathways of DAPK1 could lead to better functional recovery against CHI. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Collapse
|
10
|
The impact of DAPK1 and mTORC1 signaling association on autophagy in cancer. Mol Biol Rep 2022; 49:4959-4964. [PMID: 35083613 DOI: 10.1007/s11033-022-07154-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND The autophagy pathway is used by eukaryotic cells to maintain metabolic homeostasis. Autophagy has two functions in cancerous cells which could inhibit tumorigenesis or lead to cancer progression by increasing cell survival and proliferation. METHODS AND RESULTS In this review article, Web of Science, PubMed, Scopus, and Google Scholar were searched and summarized published studies to explore the relationship between DAPK1 and mTORC1 signaling association on autophagy in cancer. Autophagy is managed through various proteins including the mTOR, which is two separated structural and functional complexes known as mTORC1 and mTORC2. MTORC1 is an important component of the regulatory pathway affecting numerous cellular functions including proliferation, migration, invasion, and survival. This protein plays a key role in human cancers. The activity level of mTORC1 is regulated by the death-associated protein kinases (DAPks) family, especially DAPK1. In many cancers, DAPK1 acts as a tumor suppressor which can be attributed to its ability to suppress cellular transformation and to inhibit metastasis. CONCLUSIONS A deep investigation not only will reveal more about the function of DAPK1 but also might provide insights into novel therapies aimed to modulate the autophagy pathway in cancer and to achieve better cancer therapy.
Collapse
|
11
|
Zhang T, Xia Y, Hu L, Chen D, Gan CL, Wang L, Mei Y, Lan G, Shui X, Tian Y, Li R, Zhang M, Lee TH. Death-associated protein kinase 1 mediates Aβ42 aggregation-induced neuronal apoptosis and tau dysregulation in Alzheimer's disease. Int J Biol Sci 2022; 18:693-706. [PMID: 35002518 PMCID: PMC8741852 DOI: 10.7150/ijbs.66760] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/27/2021] [Indexed: 12/22/2022] Open
Abstract
The aggregation of amyloid-β (Aβ) peptides into oligomers and fibrils is a key pathological feature of Alzheimer's disease (AD). An increasing amount of evidence suggests that oligomeric Aβ might be the major culprit responsible for various neuropathological changes in AD. Death-associated protein kinase 1 (DAPK1) is abnormally elevated in brains of AD patients and plays an important role in modulating tau homeostasis by regulating prolyl isomerase Pin1 phosphorylation. However, it remains elusive whether and how Aβ species influence the function of DAPK1, and whether this may further affect the function and phosphorylation of tau in neurons. Herein, we demonstrated that Aβ aggregates (both oligomers and fibrils) prepared from synthetic Aβ42 peptides were able to upregulate DAPK1 protein levels and thereby its function through heat shock protein 90 (HSP90)-mediated protein stabilization. DAPK1 activation not only caused neuronal apoptosis, but also phosphorylated Pin1 at the Ser71 residue, leading to tau accumulation and phosphorylation at multiple AD-related sites in primary neurons. Both DAPK1 knockout (KO) and the application of a specific DAPK1 inhibitor could effectively protect primary neurons against Aβ aggregate-induced cell death and tau dysregulation, corroborating the critical role of DAPK1 in mediating Aβ aggregation-induced neuronal damage. Our study suggests a mechanistic link between Aβ oligomerization and tau hyperphosphorylation mediated by DAPK1, and supports the role of DAPK1 as a promising target for early intervention in AD.
Collapse
Affiliation(s)
- Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yongfang Xia
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Li Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Dongmei Chen
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Chen-Ling Gan
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Long Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yingxue Mei
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Guihua Lan
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Xindong Shui
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yuan Tian
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ruomeng Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Mi Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| |
Collapse
|
12
|
Disassembly of Death-associated Protein Kinase and DANGER Interaction Mediates Hippocampal CA1 Neuron Death in Rat Cerebral Ischemic Reperfusion. Neuroscience 2021; 471:11-19. [PMID: 34302906 DOI: 10.1016/j.neuroscience.2021.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/20/2022]
Abstract
Death-associated protein kinase (DAPK) is a Ca2+/CaM-regulated protein kinase that is involved in cell death processes by multiple pathways. It has been reported that DAPK may play a role in brain ischemia-induced neuronal death, but this mechanism is not well understood. DANGER, a membrane-associated protein that binds to DAPK physiologically, inhibits DAPK activation. In the present study, we used a transient global brain ischemia and reperfusion (I/R) rat model to investigate whether the interaction between DAPK and DANGER is involved in neuronal cell death following brain ischemia, and to reveal the mechanism of action. Our results indicate that the DAPK/DANGER interaction in the hippocampal CA1 region was significantly reduced after I/R with a peak reduction at 6 h. We further demonstrate that the NMDA inhibitor MK-801, DAPK inhibitor, or calcineurin inhibitor FK-506 prevented the dissociation of DANGER from DAPK 6 h after I/R. This was accompanied by a significantly decreased I/R-induced dephosphorylation of DAPK(ser-308), inhibiting DAPK catalytic activity. Moreover, the expression of DANGER and the interaction between DANGER and IP3R on the endoplasmic reticulum was significantly increased at I/R 6 h, which may be related to a reduction of DAPK/DANGER binding under I/R condition. Furthermore, MK-801, DAPK inhibitor and FK-506 had neuroprotective effects against hippocampal CA1 neuronal death 5 days after I/R. In conclusion, our data suggest that the dissociation of DANGER from DAPK may mediate DAPK activation, which is involved in DAPK-related neuronal death following I/R injury.
Collapse
|
13
|
Shin WH, Chung KC. Death-associated Protein Kinase 1 Phosphorylates α-Synuclein at Ser129 and Exacerbates Rotenone-induced Toxic Aggregation of α-Synuclein in Dopaminergic SH-SY5Y Cells. Exp Neurobiol 2020; 29:207-218. [PMID: 32624505 PMCID: PMC7344377 DOI: 10.5607/en20014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 01/12/2023] Open
Abstract
The formation of Lewy bodies (LBs), intracellular filamentous inclusions, is one of the hallmarks of Parkinson's disease (PD). α-Synuclein is the main component of LBs and its abnormal accumulation contributes to the pathogenesis of PD. Direct phosphorylation of α-synuclein at multiple Ser/Tyr residues is known to induce its aggregation, consequently promoting LB formation. Death-associated protein kinase 1 (DAPK1), originally identified as a positive mediator of γ-interferon-induced programmed cell death, possesses tumor-suppressive activity and mediates a wide range of cellular processes, including apoptosis and autophagy. Accumulating evidence suggests that DAPK1 is also associated with neuronal cell death and neurodegeneration. For example, DAPK1 phosphorylates tau and amyloid precursor protein, and induces tau aggregation and amyloid β production, respectively, in Alzheimer's disease. DAPK1 is also accumulated to a larger extent in a mouse model of PD, causing synucleinopathy and dopaminergic neuron degeneration. In this study, we attempted to determine whether DAPK1 phosphorylates α-synuclein and affects cell viability in human dopaminergic neuroblastoma SH-SY5Y cells. We demonstrated that DAPK1 directly phosphorylates α-synuclein at Ser129, and induces the formation of insoluble α-synuclein aggregates. We also showed that DAPK1 enhances rotenone-induced aggregation of α-synuclein, potentiating neuronal cell death. Taken together, these findings suggest that DAPK1 acts as a novel regulator of toxic α-synuclein aggregation, possibly affecting and playing a role in the development of PD.
Collapse
Affiliation(s)
- Woo Hyun Shin
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
14
|
The Genetics of Alzheimer's Disease in the Chinese Population. Int J Mol Sci 2020; 21:ijms21072381. [PMID: 32235595 PMCID: PMC7178026 DOI: 10.3390/ijms21072381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment. In China, the number of AD patients is growing rapidly, which poses a considerable burden on society and families. In recent years, through the advancement of genome-wide association studies, second-generation gene sequencing technology, and their application in AD genetic research, more genetic loci associated with the risk for AD have been discovered, including KCNJ15, TREM2, and GCH1, which provides new ideas for the etiology and treatment of AD. This review summarizes three early-onset AD causative genes (APP, PSEN1, and PSEN2) and some late-onset AD susceptibility genes and their mutation sites newly discovered in China, and briefly introduces the potential mechanisms of these genetic susceptibilities in the pathogenesis of AD, which would help in understanding the genetic mechanisms underlying this devastating disease.
Collapse
|
15
|
Death-Associated Protein Kinase 1 Phosphorylation in Neuronal Cell Death and Neurodegenerative Disease. Int J Mol Sci 2019; 20:ijms20133131. [PMID: 31248062 PMCID: PMC6651373 DOI: 10.3390/ijms20133131] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Regulated neuronal cell death plays an essential role in biological processes in normal physiology, including the development of the nervous system. However, the deregulation of neuronal apoptosis by various factors leads to neurodegenerative diseases such as ischemic stroke and Alzheimer’s disease (AD). Death-associated protein kinase 1 (DAPK1) is a calcium/calmodulin (Ca2+/CaM)-dependent serine/threonine (Ser/Thr) protein kinase that activates death signaling and regulates apoptotic neuronal cell death. Although DAPK1 is tightly regulated under physiological conditions, DAPK1 deregulation in the brain contributes to the development of neurological disorders. In this review, we describe the molecular mechanisms of DAPK1 regulation in neurons under various stresses. We also discuss the role of DAPK1 signaling in the phosphorylation-dependent and phosphorylation-independent regulation of its downstream targets in neuronal cell death. Moreover, we focus on the major impact of DAPK1 deregulation on the progression of neurodegenerative diseases and the development of drugs targeting DAPK1 for the treatment of diseases. Therefore, this review summarizes the DAPK1 phosphorylation signaling pathways in various neurodegenerative diseases.
Collapse
|