1
|
Cieślik J, Bakuła Z, Roeske K, Kuryłek A, Okrasińska A, Bielecki J, Wróblewska M, Jagielski T. Typing of clinical and reference strains of Saccharomyces cerevisiae using pulsed-field gel electrophoresis and MALDI-TOF MS. Sci Rep 2025; 15:17053. [PMID: 40379783 PMCID: PMC12084524 DOI: 10.1038/s41598-025-01645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025] Open
Abstract
In recent years matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid and reliable tool for microbial identification and diagnosis. However, its use for molecular typing of S. cerevisiae has been investigated in a limited number of studies, mainly based on brewing strains. The purpose of the study was to compare the results of the gold standard pulsed-field gel electrophoresis (PFGE) typing with MALDI-TOF MS on a subset of S. cerevisiae clinical and reference strains. The study comprised 50 clinical isolates, collected from single patients hospitalized in the Central Clinical Hospital of the Medical University of in Warsaw between 2014 and 2016. Furthermore eight reference strains i.e. three probiotic, four baker and one winery strains, were included. Strain typing was performed using PFGE and MALDI-TOF MS. PFGE split the study sample into six clusters and two unique profiles. Whereas MALDI-TOF MS typing produced five clusters. Overall, the results of PFGE and MALDI-TOF MS were congruent for all (49/50; 97%) but one clinical isolates. In both analyses, three probiotic strains, unlike baker's and winery strains, clustered only with clinical isolates. Although PFGE had a higher resolution capacity than MALDI-TOF MS, both methods allowed for a clear discrimination between clinically relevant (clinical & probiotic) and irrelevant (baker's and winery) strains. This is the first time that MALDI-TOF MS has proven useful in the epidemiological studies of S. cerevisiae.
Collapse
Affiliation(s)
- Justyna Cieślik
- Department of Medical Biology, National Institute of Cardiology, Stefan Cardinal Wyszyński State Research Institute, Warsaw, Poland
| | - Zofia Bakuła
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Roeske
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Kuryłek
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jacek Bielecki
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Wróblewska
- Independent Public Clinical Ophthalmology Hospital in Warsaw, Warsaw, Poland
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Borkowska M, Kułakowski M, Myszka K. High-Resolution Melting Analysis Potential for Saccharomyces cerevisiae var. boulardii Authentication in Probiotic-Enriched Food Matrices. BIOTECH 2024; 13:48. [PMID: 39584905 PMCID: PMC11586983 DOI: 10.3390/biotech13040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
To date, the only probiotic yeast with evidence of health-promoting effects is Saccharomyces cerevisiae var. boulardii. The expanded market including dietary supplements and functional foods supplemented with Saccharomyces cerevisiae var. boulardii creates an environment conductive to food adulterations, necessitating rapid testing to verify product probiotic status. Herein, qPCR-HRM analysis was tested for probiotic yeast identification. The effectiveness of the primer pairs' set was examined, designed to amplify heterogeneous regions in (a) rDNA sequences previously designed to identify food-derived yeast and (b) genes associated with physiological and genotypic divergence of Saccharomyces cerevisiae var. boulardii. Preliminary tests of amplicons' differentiation power enabled the selection of interspecies sequences for 18SrRNA and ITS and genus-specific sequences HO, RPB2, HXT9 and MAL11. The multi-fragment qPCR-HRM analysis was sufficient for culture-dependent Saccharomyces cerevisiae var. boulardii identification and proved effective in the authentication of dietary supplements' probiotic composition. The identification of S. cerevisiae var. boulardii in complex microbial mixtures of kefir succeeded with more specific intragenus sequences HO and RPB2. The predominance of S. cerevisiae var. boulardii in the tested matrices, quantitatively corresponded to the probiotic-enriched food, was crucial for identification with qPCR-HRM analysis. Considering the reported assumptions, qPCR-HRM analysis is an appropriate tool for verifying probiotic-enriched food.
Collapse
Affiliation(s)
- Monika Borkowska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland (K.M.)
| | | | | |
Collapse
|
3
|
Comparison of functional characteristics of distinct Saccharomyces boulardii strains isolated from commercial food supplements. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Saccharomyces boulardii CNCM I-745: A Non-bacterial Microorganism Used as Probiotic Agent in Supporting Treatment of Selected Diseases. Curr Microbiol 2020; 77:1987-1996. [PMID: 32472262 PMCID: PMC7415030 DOI: 10.1007/s00284-020-02053-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023]
Abstract
The yeast Saccharomyces boulardii CNCM I-745 is a unique, non-bacterial microorganism classified as a probiotic agent. In this review article, at first, we briefly summarized the mechanisms responsible for its probiotic properties, e.g. adhesion to and elimination of enteropathogenic microorganisms and their toxins; extracellular cleavage of pathogens’ virulent factors; trophic and anti-inflammatory effects on the intestinal mucosa. The efficacy of S. boulardii administration was tested in variety of human diseases. We discussed the results of S. boulardii CNCM I-745 use in the treatment or prevention of Helicobacter pylori infections, diarrhoea (Clostridium difficile infections, antibiotic-associated diarrhoea, and traveller’s diarrhoea), inflammatory bowel diseases, irritable bowel syndrome, candidiasis, dyslipidemia, and small intestine bacterial overgrowth in patients with multiple sclerosis. In case of limited number of studies regarding this strain, we also presented studies demonstrating properties and efficacy of other strains of S. boulardii. Administration of S. boulardii CNCMI I-745 during antibiotic therapy has certain advantage over bacterial probiotics, because—due to its fungal natural properties—it is intrinsically resistant to the antibiotics and cannot promote the spread of antimicrobial resistance. Even though cases of fungemia following S. boulardii CNCM I-745 administration were reported, it should be treated as a widely available and safe probiotic strain.
Collapse
|
5
|
Unique genetic basis of the distinct antibiotic potency of high acetic acid production in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Genome Res 2020; 29:1478-1494. [PMID: 31467028 PMCID: PMC6724677 DOI: 10.1101/gr.243147.118] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
The yeast Saccharomyces boulardii has been used worldwide as a popular, commercial probiotic, but the basis of its probiotic action remains obscure. It is considered conspecific with budding yeast Saccharomyces cerevisiae, which is generally used in classical food applications. They have an almost identical genome sequence, making the genetic basis of probiotic potency in S. boulardii puzzling. We now show that S. boulardii produces at 37°C unusually high levels of acetic acid, which is strongly inhibitory to bacterial growth in agar-well diffusion assays and could be vital for its unique application as a probiotic among yeasts. Using pooled-segregant whole-genome sequence analysis with S. boulardii and S. cerevisiae parent strains, we succeeded in mapping the underlying QTLs and identified mutant alleles of SDH1 and WHI2 as the causative alleles. Both genes contain a SNP unique to S. boulardii (sdh1F317Y and whi2S287*) and are fully responsible for its high acetic acid production. S. boulardii strains show different levels of acetic acid production, depending on the copy number of the whi2S287* allele. Our results offer the first molecular explanation as to why S. boulardii could exert probiotic action as opposed to S. cerevisiae. They reveal for the first time the molecular-genetic basis of a probiotic action-related trait in S. boulardii and show that antibacterial potency of a probiotic microorganism can be due to strain-specific mutations within the same species. We suggest that acquisition of antibacterial activity through medium acidification offered a selective advantage to S. boulardii in its ecological niche and for its application as a probiotic.
Collapse
|
6
|
A new, rapid multiplex PCR method identifies frequent probiotic origin among clinical Saccharomyces isolates. Microbiol Res 2019; 227:126298. [DOI: 10.1016/j.micres.2019.126298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/20/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022]
|
7
|
Kim JA, Bayo J, Cha J, Choi YJ, Jung MY, Kim DH, Kim Y. Investigating the probiotic characteristics of four microbial strains with potential application in feed industry. PLoS One 2019; 14:e0218922. [PMID: 31242260 PMCID: PMC6594638 DOI: 10.1371/journal.pone.0218922] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to evaluate the probiotic characteristics of certain microbial strains for potential use as feed additives. Three bacterial strains and a yeast previously isolated from different environments were investigated. The strains were subjected to molecular identification and established as Lactobacillus paracasei CP133, Lactobacillus plantarum CP134, Bacillus subtilis CP350 and Saccharomyces cerevisiae CP605. Lactobacillus sp. CP133 and CP134 exhibited antibiosis, antibiotic activity, and relative odor reduction ability. Bacillus subtilis CP350 was thermotolerant, reduced hydrogen sulfide gas and showed significant proteolytic activity, whereas Saccharomyces cerevisiae CP605 exhibited high acid and bile salt tolerance. In general, the isolates in this study demonstrated improved functional characteristics, particularly acid and bile tolerance and relative cell adhesion to HT-29 monolayer cell line. Results in this work provides multifunctional probiotic characteristics of the strains for potential development of probiotics and cleaning of the environment.
Collapse
Affiliation(s)
- Jung-Ae Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Korea
| | - Joel Bayo
- Department of Agricultural Convergence Technology, Chonbuk National University, Jeonju-si, Korea
| | | | - Yeon Jae Choi
- International Agricultural Development and Cooperation Center, Chonbuk National University, Jeonju-si, Korea
| | - Min Young Jung
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Korea
| | - Dae-Hyuk Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Korea
- Department of Molecular Biology, Chonbuk National University, Jeonju-si, Korea
| | - Yangseon Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Korea
- * E-mail:
| |
Collapse
|
8
|
Khatri I, Tomar R, Ganesan K, Prasad GS, Subramanian S. Complete genome sequence and comparative genomics of the probiotic yeast Saccharomyces boulardii. Sci Rep 2017; 7:371. [PMID: 28336969 PMCID: PMC5428479 DOI: 10.1038/s41598-017-00414-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
The probiotic yeast, Saccharomyces boulardii (Sb) is known to be effective against many gastrointestinal disorders and antibiotic-associated diarrhea. To understand molecular basis of probiotic-properties ascribed to Sb we determined the complete genomes of two strains of Sb i.e. Biocodex and unique28 and the draft genomes for three other Sb strains that are marketed as probiotics in India. We compared these genomes with 145 strains of S. cerevisiae (Sc) to understand genome-level similarities and differences between these yeasts. A distinctive feature of Sb from other Sc is absence of Ty elements Ty1, Ty3, Ty4 and associated LTR. However, we could identify complete Ty2 and Ty5 elements in Sb. The genes for hexose transporters HXT11 and HXT9, and asparagine-utilization are absent in all Sb strains. We find differences in repeat periods and copy numbers of repeats in flocculin genes that are likely related to the differential adhesion of Sb as compared to Sc. Core-proteome based taxonomy places Sb strains along with wine strains of Sc. We find the introgression of five genes from Z. bailii into the chromosome IV of Sb and wine strains of Sc. Intriguingly, genes involved in conferring known probiotic properties to Sb are conserved in most Sc strains.
Collapse
Affiliation(s)
- Indu Khatri
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rajul Tomar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - K Ganesan
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - G S Prasad
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | |
Collapse
|
9
|
Saccharomyces boulardii probiotic-associated fungemia: questioning the safety of this preventive probiotic's use. Diagn Microbiol Infect Dis 2016; 87:286-288. [PMID: 28024866 DOI: 10.1016/j.diagmicrobio.2016.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/19/2016] [Accepted: 12/09/2016] [Indexed: 01/25/2023]
Abstract
We report a case of fungemia in an immunocompetent patient after administration of probiotic containing Saccharomyces boulardii. We demonstrated the strain relatedness of the yeast from the probiotic capsule and the yeast causing fungal infection using genomic and proteomic typing methods. Our study questions the safety of this preventative biotherapy.
Collapse
|
10
|
Medium optimization and kinetics modeling for the fermentation of hydrolyzed cheese whey permeate as a substrate for Saccharomyces cerevisiae var. boulardii. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Ibrahem MD. Evolution of probiotics in aquatic world: Potential effects, the current status in Egypt and recent prospectives. J Adv Res 2015; 6:765-91. [PMID: 26644914 PMCID: PMC4642160 DOI: 10.1016/j.jare.2013.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022] Open
Abstract
The increase in the human population in addition to the massive demand for protein of animal origin forced the authorities to seek for additional sources of feed supplies. Aquaculture is the world worth coming expansion to compensate the shortage in animal protein. Feed in aquaculture plays an important role in the production cycle and exert threshold on both practical and economic aspects. Feed additive sectors are expanding day after day to achieve better growth and health for fish and shrimp and to meet the potential requirements of the culturists. Probiotic proved its successes in human and animal feeding practices and recently gained attention in aquaculture; it has beneficial effects in diseases control and competes with various environmental stressors as well as to promote the growth of the cultured organisms. Probiotics have the privilege to manipulate the non-specific innate immunity among fishes, hence help them into resist many pathogenic agents and are actively used worldwide. The present review is an informative compilation of the probiotics, their mode of action and their useful effects on fishes. The review also highlights the status of probiotics in aquaculture of Egypt, probiotic recent prospective for the possible role of probiotics in fish external and internal environment.
Collapse
Affiliation(s)
- Mai D. Ibrahem
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| |
Collapse
|
12
|
Elkhihal B, Elhalimi M, Ghfir B, Mostachi A, Lyagoubi M, Aoufi S. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?]. J Mycol Med 2015; 25:303-5. [PMID: 26522963 DOI: 10.1016/j.mycmed.2015.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/13/2015] [Accepted: 09/14/2015] [Indexed: 10/22/2022]
Abstract
Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients.
Collapse
Affiliation(s)
- B Elkhihal
- Laboratoire central parasitologie-mycologie, hôpital Ibn Sina, rue Lemfadel-Cherkaoui, BP 6527, Rabat-Souissi, Rabat, Maroc; Faculté de médecine et de pharmacie, université Mohamed V, Rabat, Maroc.
| | - M Elhalimi
- Laboratoire central parasitologie-mycologie, hôpital Ibn Sina, rue Lemfadel-Cherkaoui, BP 6527, Rabat-Souissi, Rabat, Maroc; Faculté de médecine et de pharmacie, université Mohamed V, Rabat, Maroc
| | - B Ghfir
- Laboratoire central parasitologie-mycologie, hôpital Ibn Sina, rue Lemfadel-Cherkaoui, BP 6527, Rabat-Souissi, Rabat, Maroc
| | - A Mostachi
- Laboratoire central parasitologie-mycologie, hôpital Ibn Sina, rue Lemfadel-Cherkaoui, BP 6527, Rabat-Souissi, Rabat, Maroc
| | - M Lyagoubi
- Laboratoire central parasitologie-mycologie, hôpital Ibn Sina, rue Lemfadel-Cherkaoui, BP 6527, Rabat-Souissi, Rabat, Maroc; Faculté de médecine et de pharmacie, université Mohamed V, Rabat, Maroc
| | - S Aoufi
- Laboratoire central parasitologie-mycologie, hôpital Ibn Sina, rue Lemfadel-Cherkaoui, BP 6527, Rabat-Souissi, Rabat, Maroc; Faculté de médecine et de pharmacie, université Mohamed V, Rabat, Maroc
| |
Collapse
|
13
|
Anoop V, Rotaru S, Shwed PS, Tayabali AF, Arvanitakis G. Review of current methods for characterizing virulence and pathogenicity potential of industrial Saccharomyces cerevisiae strains towards humans. FEMS Yeast Res 2015. [PMID: 26195617 DOI: 10.1093/femsyr/fov057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Most industrial Saccharomyces cerevisiae strains used in food or biotechnology processes are benign. However, reports of S. cerevisiae infections have emerged and novel strains continue to be developed. In order to develop recommendations for the human health risk assessment of S. cerevisiae strains, we conducted a literature review of current methods used to characterize their pathogenic potential and evaluated their relevance towards risk assessment. These studies revealed that expression of virulence traits in S. cerevisiae is complex and depends on many factors. Given the opportunistic nature of this organism, an approach using multiple lines of evidence is likely necessary for the reasonable prediction of the pathogenic potential of a particular strain. Risk assessment of S. cerevisiae strains would benefit from more research towards the comparison of virulent and non-virulent strains in order to better understand those genotypic and phenotypic traits most likely to be associated with pathogenicity.
Collapse
Affiliation(s)
- Valar Anoop
- New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 99 Metcalfe Street, Floor-11, Ottawa, ON K1A 0K9, Canada
| | - Sever Rotaru
- New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 99 Metcalfe Street, Floor-11, Ottawa, ON K1A 0K9, Canada
| | - Philip S Shwed
- Environmental Health Science Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A0K9, Canada
| | - Azam F Tayabali
- Environmental Health Science Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, ON K1A0K9, Canada
| | - George Arvanitakis
- New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 99 Metcalfe Street, Floor-11, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
14
|
Establishment and application of target gene disruption system in Saccharomyces boulardii. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0197-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Wang T, Sun H, Zhang J, Liu Q, Wang L, Chen P, Wang F, Li H, Xiao Y, Zhao X. The establishment of Saccharomyces boulardii surface display system using a single expression vector. Fungal Genet Biol 2014; 64:1-10. [DOI: 10.1016/j.fgb.2013.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/27/2022]
|
16
|
Huys G, Botteldoorn N, Delvigne F, De Vuyst L, Heyndrickx M, Pot B, Dubois JJ, Daube G. Microbial characterization of probiotics--advisory report of the Working Group "8651 Probiotics" of the Belgian Superior Health Council (SHC). Mol Nutr Food Res 2013; 57:1479-504. [PMID: 23801655 PMCID: PMC3910143 DOI: 10.1002/mnfr.201300065] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 01/22/2013] [Accepted: 02/20/2013] [Indexed: 12/17/2022]
Abstract
When ingested in sufficient numbers, probiotics are expected to confer one or more proven health benefits on the consumer. Theoretically, the effectiveness of a probiotic food product is the sum of its microbial quality and its functional potential. Whereas the latter may vary much with the body (target) site, delivery mode, human target population, and health benefit envisaged microbial assessment of the probiotic product quality is more straightforward. The range of stakeholders that need to be informed on probiotic quality assessments is extremely broad, including academics, food and biotherapeutic industries, healthcare professionals, competent authorities, consumers, and professional press. In view of the rapidly expanding knowledge on this subject, the Belgian Superior Health Council installed Working Group "8651 Probiotics" to review the state of knowledge regarding the methodologies that make it possible to characterize strains and products with purported probiotic activity. This advisory report covers three main steps in the microbial quality assessment process, i.e. (i) correct species identification and strain-specific typing of bacterial and yeast strains used in probiotic applications, (ii) safety assessment of probiotic strains used for human consumption, and (iii) quality of the final probiotic product in terms of its microbial composition, concentration, stability, authenticity, and labeling.
Collapse
Affiliation(s)
- Geert Huys
- Laboratory for Microbiology & BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Büchl N, Hutzler M, Mietke-Hofmann H, Wenning M, Scherer S. Differentiation of probiotic and environmental Saccharomyces cerevisiae strains in animal feed. J Appl Microbiol 2010; 109:783-91. [DOI: 10.1111/j.1365-2672.2010.04705.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Vanhee L, Goemé F, Nelis H, Coenye T. Quality control of fifteen probiotic products containing Saccharomyces boulardii. J Appl Microbiol 2010; 109:1745-52. [DOI: 10.1111/j.1365-2672.2010.04805.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
McFarland LV. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 2010; 16:2202-22. [PMID: 20458757 PMCID: PMC2868213 DOI: 10.3748/wjg.v16.i18.2202] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/13/2010] [Accepted: 02/20/2010] [Indexed: 02/06/2023] Open
Abstract
This article reviews the evidence for efficacy and safety of Saccharomyces boulardii (S. boulardii) for various disease indications in adults based on the peer-reviewed, randomized clinical trials and pre-clinical studies from the published medical literature (Medline, Clinical Trial websites and meeting abstracts) between 1976 and 2009. For meta-analysis, only randomized, blinded controlled trials unrestricted by language were included. Pre-clinical studies, volunteer studies and uncontrolled studies were excluded from the review of efficacy and meta-analysis, but included in the systematic review. Of 31 randomized, placebo-controlled treatment arms in 27 trials (encompassing 5029 study patients), S. boulardii was found to be significantly efficacious and safe in 84% of those treatment arms. A meta-analysis found a significant therapeutic efficacy for S. boulardii in the prevention of antibiotic-associated diarrhea (AAD) (RR = 0.47, 95% CI: 0.35-0.63, P < 0.001). In adults, S. boulardii can be strongly recommended for the prevention of AAD and the traveler's diarrhea. Randomized trials also support the use of this yeast probiotic for prevention of enteral nutrition-related diarrhea and reduction of Helicobacter pylori treatment-related symptoms. S. boulardii shows promise for the prevention of C. difficile disease recurrences; treatment of irritable bowel syndrome, acute adult diarrhea, Crohn's disease, giardiasis, human immunodeficiency virus-related diarrhea; but more supporting evidence is recommended for these indications. The use of S. boulardii as a therapeutic probiotic is evidence-based for both efficacy and safety for several types of diarrhea.
Collapse
|
21
|
Scientific Opinion on the substantiation of health claims related to non characterised bacteria and yeasts pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
22
|
Pennacchia C, Blaiotta G, Pepe O, Villani F. Isolation of Saccharomyces cerevisiae strains from different food matrices and their preliminary selection for a potential use as probiotics. J Appl Microbiol 2009; 105:1919-28. [PMID: 19120638 DOI: 10.1111/j.1365-2672.2008.03968.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To isolate acid- and bile-resistant Saccharomyces cerevisiae strains directly from food samples and to preliminarily select them on the basis of fundamental probiotic properties. METHODS AND RESULTS A rapid screening method allowed the isolation and selection of 20 acid- and bile-resistant yeasts from foods, avoiding time-consuming isolation steps. The strains were characterized for their specific survival in simulated gastric juice and in intestinal fluid after pre-exposure at low pH. Ten isolates demonstrated a satisfactory survival percentage in intestinal fluid after pre-exposure to gastric juice and appreciable lipolytic and proteolytic properties, as demonstrated by the API-ZYM test. By using molecular methods five strains were identified as Saccharomyces cerevisiae, three as Candida spp., one as Candida pararugosa and one as Pichia spp. The Saccharomyces cerevisiae strains showed considerable probiotic properties, achieving a 80< % <90 survival through the simulated gastrointestinal tract, as well as interesting glucosidase activities. CONCLUSIONS The research represents an efficient strategy to select and identify Saccharomyces cerevisiae strains with desirable acid and bile resistances. SIGNIFICANCE AND IMPACT OF THE STUDY This paper reports the direct selection of potentially probiotic yeasts from foods and provides indications about the ability of Saccharomyces cerevisiae strains to survive conditions simulating the human gastrointestinal tract.
Collapse
Affiliation(s)
- C Pennacchia
- Dipartimento di Scienza degli Alimenti, Università degli Studi di Napoli Federico II, Portici, Italy
| | | | | | | |
Collapse
|
23
|
Graff S, Chaumeil JC, Boy P, Lai-Kuen R, Charrueau C. Influence of pH conditions on the viability of Saccharomyces boulardii yeast. J GEN APPL MICROBIOL 2008; 54:221-7. [PMID: 18802321 DOI: 10.2323/jgam.54.221] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Saccharomyces boulardii is a probiotic with proven health benefits. However its survival is challenged by gastrointestinal transit, and a ratio between 1 and 3% of living yeast is recovered in the feces after oral administration. The aim of the study was to determine to what extent the yeast was sensitive to gastrointestinal pH conditions. Therefore we explored the survival of different concentrations of S. boulardii in conditions mimicking the stomach pH (pH 1.1 0.1 N HCl) and the intestinal pH (pH 6.8 phosphate buffer) in vitro. The probiotic being commercialized as a freeze-dried powder obtained from an aqueous suspension, both forms were evaluated. In phosphate buffer pH 6.8, the viability remained stable for both forms of S. boulardii for 6 h. In HCl pH 1.1, viability of both forms (200 mg L(-1)) significantly decreased from 5 min. Observation under scanning/transmission electron microscopy showed morphological damages and rupture of the yeast wall. Threshold value from which S. boulardii viability was unaltered was pH 4. At the highest concentration of 200 g L(-1), the initial pH value of 1.1 rose to 3.2, exerting a protective effect. In conclusion, although the yeast in aqueous suspension was less sensitive than the freeze-dried yeast to acidic conditions, a gastric protection for improvement of oral bioavailability of viable S. boulardii appears necessary.
Collapse
Affiliation(s)
- Sandrine Graff
- Laboratoire de Pharmacie Galénique EA 2498, Faculté des Sciences Pharmaceutiques et Biologiques, Paris Cedex, France.
| | | | | | | | | |
Collapse
|
24
|
MacKenzie DA, Defernez M, Dunn WB, Brown M, Fuller LJ, de Herrera SRMS, Günther A, James SA, Eagles J, Philo M, Goodacre R, Roberts IN. Relatedness of medically important strains of Saccharomyces cerevisiae as revealed by phylogenetics and metabolomics. Yeast 2008; 25:501-12. [PMID: 18615862 DOI: 10.1002/yea.1601] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ten medically important Saccharomyces strains, comprising six clinical isolates of Saccharomyces cerevisiae and four probiotic strains of Saccharomyces boulardii, were characterized at the genetic and metabolic level and compared with non-medical, commercial yeast strains used in baking and wine-making. Strains were compared by genetic fingerprinting using amplified fragment length polymorphism (AFLP) analysis, by ribosomal DNA ITS1 sequencing and by metabolic footprinting using both direct injection mass spectrometry (DIMS) and gas chromatography-time of flight-mass spectrometry (GC-ToF-MS). Overall, the clinical isolates fell into different groupings when compared with the non-medical strains, with good but not perfect correlation amongst strains at both the genetic and metabolic levels. Probiotic strains of S. boulardii that are used therapeutically to treat human gastro-intestinal tract disorders showed tight clustering both genetically and metabolically. Metabolomics was found to be of value both as a taxonomic tool and as a means to investigate anomalous links between genotype and phenotype. Key discriminatory metabolites were identified when comparing the three main groups of clinical, probiotic and non-medical strains and included molecules such as trehalose, myo-inositol, lactic acid, fumaric acid and glycerol 3-phosphate. This study confirmed the link between a subset of clinical isolates and baking or probiotic strains but also highlighted that in general the clinical strains were more diverse at both the genomic and metabolic levels.
Collapse
Affiliation(s)
- Donald A MacKenzie
- National Collection of Yeast Cultures, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Graff S, Chaumeil JC, Boy P, Lai-Kuen R, Charrueau C. Formulations for protecting the probiotic Saccharomyces boulardii from degradation in acidic condition. Biol Pharm Bull 2008; 31:266-72. [PMID: 18239285 DOI: 10.1248/bpb.31.266] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Saccharomyces boulardii is a nonpathogenic yeast with proven health benefits, some of them depending on its viability. However, the living yeast is sensitive to environmental conditions and its viability is less than 1% in the faeces after oral administration. Therefore, we assessed the survival conditions of S. boulardii in aqueous suspension and in its freeze-dried form and we formulated microspheres with the former and tablets with the latter in order to preserve the viability of the probiotic. While the viability of the yeast in aqueous suspension could be maintained for one year at -20 degrees C and +5 degrees C, increasing the temperature led to almost total mortality within 14 d at +40 degrees C and 4 d at +60 degrees C. The viability of the freeze-dried yeast was preserved for one year at +25 degrees C without moisture. With 75% relative humidity, the mortality was significant at 28 d at +25 degrees C and almost total within 1 d at +60 degrees C. In vitro, whereas less than 1% of non-encapsulated or non-tabletted S. boulardii survived after 120 min at pH 1.1, both formulations in microspheres and direct compression enabled to protect the yeast from degradation in HCl and to release it viable at pH 6.8. However, despite a similar release profile from both dosage forms, the compression led to a significant decrease in the viability of the freeze-dried yeast. In conclusion, although both formulations are efficient in protecting S. boulardii in acidic condition, microspheres provide a higher entrapment efficiency and a faster release of the viable probiotic in intestinal condition than matrix tablets.
Collapse
Affiliation(s)
- Sandrine Graff
- Laboratoire de Pharmacie Galénique EA 2498, Université Paris Descartes, Paris, France.
| | | | | | | | | |
Collapse
|
26
|
Skovgaard N. New trends in emerging pathogens. Int J Food Microbiol 2007; 120:217-24. [DOI: 10.1016/j.ijfoodmicro.2007.07.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 07/24/2007] [Accepted: 07/27/2007] [Indexed: 10/23/2022]
|
27
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|