1
|
Farid A, Wang Z, Khan MU, Wang P, Wang H, Liu H, Chen Z. "Emerging technologies for detecting foodborne pathogens and spoilage microorganisms in milk: Ensuring safety and quality". Food Microbiol 2025; 130:104763. [PMID: 40210394 DOI: 10.1016/j.fm.2025.104763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/11/2025] [Accepted: 02/28/2025] [Indexed: 04/12/2025]
Abstract
Foodborne and spoilage microorganisms pose significant challenges to both food safety and product integrity, particularly within the dairy industry. These microorganisms can adversely affect milk quality, safety, shelf life, and the overall sustainability of the dairy industry, making their detection a critical concern in food science. This review explores a range of emerging and innovative detection techniques, including molecular, immunological, and sensor-based methods, with a focus on their practical implementation in dairy microbiology. While culture-based methods remain the gold standard, they suffer from several limitations, including being time-consuming, labor-intensive, costly, and less effective at detecting non-culturable microorganisms. Recent advancements in rapid, high-throughput, and high-sensitivity detection technologies have transformed the ability to identify and control both foodborne pathogens and spoilage microorganisms in milk, offering superior accuracy, efficiency, and real-time monitoring capabilities. This review provides a comprehensive overview of cutting-edge microbial detection approaches in milk, highlighting the key characteristics of these emerging methods developed in recent years. Furthermore, global regulatory standards in milk microbiology among eight representative countries were comparatively analyzed to elucidate the current landscape of dairy microbiology regulatory frameworks. Our primary objective is to synthesize current scientific research to offer insights into the effectiveness, practicality, and industry adoption of these emerging detection technologies. We critically examine studies that have contributed to the development of rapid and accurate microbial detection methods, assessing their impact on food safety, quality assurance, and regulatory compliance. By consolidating and analyzing cutting-edge advancements in microbial detection, this review aims to contribute to ongoing efforts to strengthen both food safety and quality assurance in the dairy industry by integrating novel detection technologies into routine monitoring practices. We aim to provide a valuable resource for researchers, industry professionals, and policymakers, facilitating informed decision-making and promoting the adoption of effective microbial detection strategies from dairy farms to consumer products.
Collapse
Affiliation(s)
- Anum Farid
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255049, PR China; Shandong Provincial Innovation Centre for Dairy Technology, PR China
| | - Zeyu Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China; Shandong Provincial Innovation Centre for Dairy Technology, PR China
| | - Mati Ullah Khan
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255049, PR China; Shandong Provincial Innovation Centre for Dairy Technology, PR China
| | - Pengfei Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China; Shandong Provincial Innovation Centre for Dairy Technology, PR China
| | - Hongshan Wang
- Shandong Provincial Innovation Centre for Dairy Technology, PR China; Junlebao Dairy Group Co., LTD, Shijiazhuang, 050000, PR China
| | - Hong Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China; Shandong Provincial Innovation Centre for Dairy Technology, PR China.
| | - Zhiwei Chen
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255049, PR China; Shandong Provincial Innovation Centre for Dairy Technology, PR China.
| |
Collapse
|
2
|
Nakov G, Trajkovska B, Atanasova-Pancevska N, Daniloski D, Ivanova N, Lučan Čolić M, Jukić M, Lukinac J. The Influence of the Addition of Hemp Press Cake Flour on the Properties of Bovine and Ovine Yoghurts. Foods 2023; 12:foods12050958. [PMID: 36900475 PMCID: PMC10001388 DOI: 10.3390/foods12050958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Hemp press cake flour (HPCF) is a by-product of hemp oil production rich in proteins, carbohydrates, minerals, vitamins, oleochemicals, and phytochemicals. The purpose of this study was to investigate how the addition of HPCF to bovine and ovine plain yoghurts at concentrations of 0%, 2%, 4%, 6%, 8%, and 10% could change the physicochemical, microbiological, and sensory properties of the yoghurts, focusing on the improvement of quality and antioxidant activity, and the issue of food by-products and their utilisation. The results showed that the addition of HPCF to yoghurts significantly affected their properties, including an increase in pH and decrease in titratable acidity, change in colour to darker, reddish or yellowish hue, and a rise in total polyphenols and antioxidant activity during storage. Yoghurts fortified with 4% and 6% HPCF exhibited the best sensory properties, thus maintaining viable starter counts in the yoghurts during the study period. There were no statistically significant differences between the control yoghurts and the samples with 4% added HPCF in terms of overall sensory score while maintaining viable starter counts during the seven-day storage. These results suggest that the addition of HPCF to yoghurts can improve product quality and create functional products and may have potential in sustainable food waste management.
Collapse
Affiliation(s)
- Gjore Nakov
- College of Sliven, Technical University of Sofia, 59 Bourgasko Shaussee Blvd., 8800 Sliven, Bulgaria
| | - Biljana Trajkovska
- Faculty of Biotechnical Sciences, University “St. Kliment Ohridski”, 7000 Bitola, North Macedonia
| | - Natalija Atanasova-Pancevska
- Faculty of Natural Sciences and Mathematics-Skopje, Department of Microbiology and Microbial Biotechnology, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| | - Davor Daniloski
- Advanced Food Systems Research Unit, Institute for Sustainable Industries and Liveable Cities, College of Health and Biomedicine, Victoria University, Melbourne, VIC 8001, Australia
- Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, P61 C996 Cork, Ireland
| | - Nastia Ivanova
- College of Sliven, Technical University of Sofia, 59 Bourgasko Shaussee Blvd., 8800 Sliven, Bulgaria
| | - Mirela Lučan Čolić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marko Jukić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-31224308
| | - Jasmina Lukinac
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
3
|
Liu J, Huang T, Hong W, Peng F, Lu Z, Peng G, Fu X, Liu G, Wang Z, Peng Q, Gong X, Zhou L, Li L, Li B, Xu Z, Lan H. A comprehensive study on ultrasonic deactivation of opportunistic pathogen Saccharomyces cerevisiae in food processing: From transcriptome to phenotype. Lebensm Wiss Technol 2022; 170:114069. [DOI: 10.1016/j.lwt.2022.114069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Tengyi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fang Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zerong Lu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Fu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gongliang Liu
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Zhi Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qingmei Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiangjun Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Lizhen Zhou
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Spoilage Potential of Contaminating Yeast Species Kluyveromyces marxianus, Pichia kudriavzevii and Torulaspora delbrueckii during Cold Storage of Skyr. Foods 2022; 11:foods11121776. [PMID: 35741978 PMCID: PMC9223127 DOI: 10.3390/foods11121776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigated the spoilage potential of yeast strains Kluyveromyces marxianus (Km1, Km2 and Km3), Pichia kudriavzevii Pk1 and Torulaspora delbrueckii Td1 grown in skyr in cold storage. Yeast strains were isolated from skyr and identified by sequencing of the 26S rRNA gene. K. marxianus yeasts were grown in skyr to high numbers, generating large amounts of volatile organic compounds (VOC) associated with off-flavours, among them were alcohols (3-methyl-1-butanol, 2-methyl-1-propanol and 1-hexanol), esters (ethyl acetate and 3-methylbutyl acetate) and aldehydes (hexanal, methylbutanal and methylpropanal). Growth of P. kudriavzevii Pk1 led to moderate increases in several alcohols and esters (mostly, 3-methyl-1-butanol and ethyl acetate), whereas only minor shifts in VOCs were associated with T. delbrueckii Td2. The levels of the key aroma compounds, diacetyl and acetoin, were significantly decreased by all K. marxianus strains and P. kudriavzevii Pk1. In contrast to the other yeast species, K. marxianus was able to utilize lactose, producing ethanol and carbon dioxide. Based on the overall results, K. marxianus was characterised by the highest spoilage potential. The study revealed the differences between the yeast species in fermentative and spoilage activities, and clarified the role of yeast metabolites for off-flavour formation and quality defects in skyr during cold storage.
Collapse
|
5
|
Yogurt drink spoilage profiles: Characterization of physico-chemical properties and coliform potability analysis. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Nielsen L, Rolighed M, Buehler A, Knøchel S, Wiedmann M, Marvig C. Development of predictive models evaluating the spoilage-delaying effect of a bioprotective culture on different yeast species in yogurt. J Dairy Sci 2021; 104:9570-9582. [PMID: 34127268 DOI: 10.3168/jds.2020-20076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/27/2021] [Indexed: 01/30/2023]
Abstract
Yeast spoilage of fermented dairy products causes challenges for the dairy industry, including economic losses due to wasted product. Food cultures with bioprotective effects are becoming more widely used to help ensure product quality throughout product shelf life. To assist the dairy industry when evaluating product quality throughout shelf life and the effect of bioprotective cultures, we aimed to build stochastic models that provide reliable predictions of yeast spoilage in yogurt with and without bioprotective culture. Growth characterizations of Debaryomyces hansenii, Yarrowia lipolytica, Saccharomyces cerevisiae, and Kluyveromyces marxianus at storage temperatures of 7, 12, and 16°C during a 30-d storage period were conducted in yogurt with and without a bioprotective culture containing Lacticaseibacillus rhamnosus strains. The kinetic growth parameters were calculated using the Buchanan growth model, and these parameters were used as baseline values in Monte Carlo models to translate the yeast growth into spoilage levels. The models were developed using 100,000 simulations and they predicted yeast spoilage levels in yogurt by the 4 yeast types. Each modeled yogurt batch was set to be contaminated with yeast at a concentration drawn from a normal distribution with a mean of 1 log10 cfu/mL and standard deviation of 1 log10 cfu/mL and stored for 30 d at a temperature drawn from a normal distribution with a mean of 6.1°C and a standard deviation of 2.8°C. Considering a spoilage level of 5 log10 cfu/mL, the predicted number of spoiled samples was reduced 3-fold during the first 10 d and by 2-fold at the end of shelf life when a bioprotective culture was added to the yogurt. The models were evaluated by sensitivity analyses, where the main effect factors were maximum yeast population, storage temperature, and yeast strain. The models were validated by comparing the model output to actual observed spoilage data from a European dairy using the bioprotective culture. When the model prediction, based on a mixture of the 4 specific yeast strains, was compared with spoilage data from the European dairy, the observed effect of bioprotective cultures was considerably higher than predicted, potentially influenced by the presence of contaminating strains more sensitive to a bioprotective culture than those characterized here. The developed Monte Carlo models can predict yeast spoilage levels in yogurt at specific production settings and how this may be affected by various parameters and addition of bioprotective cultures.
Collapse
Affiliation(s)
- Line Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Maria Rolighed
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark; Department of Dairy Bioprotection, Chr. Hansen A/S, Boege Allé 10-12, 2970 Hoersholm, Denmark.
| | - Ariel Buehler
- Department of Food Science, Cornell University, 341 Stocking Hall, Ithaca, NY 14853
| | - Susanne Knøchel
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Martin Wiedmann
- Department of Food Science, Cornell University, 341 Stocking Hall, Ithaca, NY 14853
| | - Cecilie Marvig
- Department of Dairy Bioprotection, Chr. Hansen A/S, Boege Allé 10-12, 2970 Hoersholm, Denmark
| |
Collapse
|
7
|
Milanović V, Sabbatini R, Garofalo C, Cardinali F, Pasquini M, Aquilanti L, Osimani A. Evaluation of the inhibitory activity of essential oils against spoilage yeasts and their potential application in yogurt. Int J Food Microbiol 2021; 341:109048. [PMID: 33486390 DOI: 10.1016/j.ijfoodmicro.2021.109048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022]
Abstract
Yeasts are the leading cause of spoilage in yogurt. Considering the high demand from consumers to use natural products as an alternative to additives, essential oils (EOs) could be a promising solution to guarantee high microbiological standards. The present study highlighted the in vitro antifungal potential of cinnamon, ginger, lemongrass, mandarin, orange, lemon and lime EOs against spoilage yeasts isolated from yogurts prepared with pasteurized buffalo milk. A total of 74 isolates represented by 14 different species of Candida, Rhodotorula, Debaryomyces, Kluyveromyces and Yarrowia genera were subjected to a disc diffusion assay, showing lemongrass EO to have the highest antifungal activity (40.97 ± 9.86 mm), followed by cinnamon (38.46 ± 6.59 mm) and orange (12.00 ± 4.52 mm) EOs. Yarrowia lipolytica was less susceptible to lemongrass EO than Candida sake and Yarrowia deformans isolates. Ginger EO exhibited the lowest efficacy. A minimum inhibitory concentration (MIC) assay showed the ability of lemongrass and cinnamon EOs to inhibit the growth of all selected isolates at concentrations between ≤0.31 and 1.25 μL/mL. Therefore, for the first time, the two best-performing EOs (lemongrass and cinnamon) based on in vitro assays were assessed for their potential roles as preservatives in an in vivo yogurt model prepared at the laboratory scale. Since some limitations, such as the inhibition of lactic acid bacteria by cinnamon EO, consequently leading to fermentation failure as well as species-specific antifungal activity of lemongrass EO, were observed, further studies are needed to explore the possibility of using a slightly higher concentration of lemongrass EO and/or combinations of different EOs and/or their components. Finally, since yogurt spoilage could also be prevented by correct sanitation procedures of the production environment, the sanitizers commonly used in the food industry were tested against all isolates, showing the high efficiency of alcohol-based sanitizers and the ineffectiveness of chlorine-based sanitizers.
Collapse
Affiliation(s)
- Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Riccardo Sabbatini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Marina Pasquini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
8
|
Shwaiki LN, Arendt EK, Lynch KM. Anti-yeast activity and characterisation of synthetic radish peptides Rs-AFP1 and Rs-AFP2 against food spoilage yeast. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Corbett KM, de Smidt O. Culture-dependent diversity profiling of spoilage yeasts species by PCR-RFLP comparative analysis. FOOD SCI TECHNOL INT 2019; 25:671-679. [PMID: 31272221 DOI: 10.1177/1082013219856779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spoilage caused by yeasts is a constant, widespread problem in the beverage industry that can result in major economic losses. Fruit juices provide an environment that allows the proliferation of yeast. Some factories in South Africa are not equipped with laboratory facilities to identify spoilage yeasts and outsourcing becomes a prolonged process which obstructs corrective action planning. This study aimed to establish yeast diversity and apply a rapid method for preliminary identification of spoilage yeasts associated with a small-scale fruit juice bottling factory. Yeast population in the factory was determined by isolation from the production environment, process equipment and spoiled products. PCR-RFLP analysis targeting the 5.8S-ITS region and D1/D2 sequencing was used for identification. A total of 207 yeasts belonging to 10 different genera (Candida, Lodderomyces, Wickerhamomyces, Yarrowia, Zygosaccharomyces, Zygoascus, Cryptococcus, Filobasidium, Rhodotorula/Cystobasidium and Trichosporon) were isolated and identified from the production environment and processing equipment. Candida intermedia, C. parapsilosis and Lodderomyces elongisporus were widely distributed in the factory. Zygosaccharomyces bailii, Z. bisporus, Zygoascus hellenicus and Saccharomyces cerevisiae were isolated from the spoiled products. The data provided a yeast control panel that was used successfully to identify unknown yeasts in spoiled products from this factory using polymerase chain reaction-restriction length polymorphism (PCR-RFLP) comparative analysis.
Collapse
Affiliation(s)
- Kereng M Corbett
- Centre for Applied Food Security and -Biotechnology (CAFSaB), Central University of Technology, Bloemfontein, South Africa
| | - Olga de Smidt
- Centre for Applied Food Security and -Biotechnology (CAFSaB), Central University of Technology, Bloemfontein, South Africa
| |
Collapse
|
10
|
Buehler AJ, Evanowski RL, Wiedmann M, Martin NH. Internal transcribed spacer (ITS) sequence-based characterization of fungal isolates from multiple yogurt facilities-A case study. J Dairy Sci 2019; 102:3646-3653. [PMID: 30799113 DOI: 10.3168/jds.2018-15636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/19/2018] [Indexed: 11/19/2022]
Abstract
Fungal spoilage remains a significant issue in dairy product quality, especially for cultured dairy products such as yogurt formulated without preservatives such as potassium sorbate. Fungal contamination can occur throughout the processing continuum, from the dairy farm environment to the finished product processing environment. As molecular characterization of fungal isolates is used more frequently, we obtained fungal isolates obtained in 2 yogurt processing facilities as part of routine fungal testing of raw materials (e.g., fruit preparations, added ingredients), in-process product samples, environmental samples (e.g., air plates, equipment surfaces such as valves, face plates, air nozzles), and finished product samples, to determine whether internal transcribed spacer (ITS) barcoding data would be helpful to support source tracking of fungal contamination issues. Internal transcribed spacer PCR amplification and sequencing allowed us to classify the 852 isolates from these 2 facilities into 200 unique ITS allelic types (AT), representing the phyla Ascomycota (743 isolates), Basidiomycota (97 isolates), and Mucoromycota (12 isolates). Thirty ITS AT were isolated from both facilities; 62 and 108 ITS AT were isolated from only facility A or only facility B, respectively. Nine ITS AT were each represented by more than 20 isolates; these AT comprised 53% of the 852 isolates. The considerable diversity of fungal isolates even within a single facility illustrates the challenge associated with controlling fungal contamination of dairy products. The ITS barcoding technique, however, did show promise for facilitating the source tracking of fungal contamination, particularly for ITS AT over-represented in a given facility. For example, we found evidence for equipment-specific reservoirs for 2 AT (14 and 219) in facility B. Our data suggest that despite its limited discriminatory power, ITS sequencing can provide initial information that can help trace fungal contamination along the processing continuum. However, development and implementation of discriminatory subtyping methods will be needed to further improve the ability to identify sources of fungal contamination in dairy facilities. Developing and implementing sampling plans that comprehensively capture yeast and mold diversity in a given processing facility remain a considerable challenge.
Collapse
Affiliation(s)
- A J Buehler
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - R L Evanowski
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - M Wiedmann
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853.
| | - N H Martin
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
11
|
Buehler A, Martin N, Boor K, Wiedmann M. Evaluation of biopreservatives in Greek yogurt to inhibit yeast and mold spoilage and development of a yogurt spoilage predictive model. J Dairy Sci 2018; 101:10759-10774. [DOI: 10.3168/jds.2018-15082] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/06/2018] [Indexed: 11/19/2022]
|
12
|
Tittarelli F, Varela JA, Gethins L, Stanton C, Ross RP, Suzzi G, Grazia L, Tofalo R, Morrissey JP. Development and implementation of multilocus sequence typing to study the diversity of the yeast Kluyveromyces marxianus in Italian cheeses. Microb Genom 2018; 4. [PMID: 29345222 PMCID: PMC5857380 DOI: 10.1099/mgen.0.000153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast Kluyveromyces marxianus possesses advantageous traits like rapid growth, GRAS (generally regarded as safe) status and thermotolerance that make it very suitable for diverse biotechnological applications. Although physiological studies demonstrate wide phenotypic variation within the species, there is only limited information available on the genetic diversity of K. marxianus. The aim of this work was to develop a multilocus sequence typing (MLST) method for K. marxianus to improve strain classification and selection. Analysis of housekeeping genes in a number of sequenced strains led to the selection of five genes, IPP1, TFC1, GPH1, GSY2 and SGA1, with sufficient polymorphic sites to allow MLST analysis. These loci were sequenced in an additional 76 strains and used to develop the MLST. This revealed wide diversity in the species and separation of the culture collection and wild strains into multiple distinct clades. Two subsets of strains that shared sources of origin were subjected to MLST and split decomposition analysis. The latter revealed evidence of recombination, indicating that this yeast undergoes mating in the wild. A public access web-based portal was established to allow expansion of the database and application of MLST to additional K. marxianus strains. This will aid understanding of the genetic diversity of the yeast and facilitate biotechnological exploitation.
Collapse
Affiliation(s)
- Fabrizia Tittarelli
- 1Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,2School of Microbiology, Environmental Research Institute, Centre for Synthetic Biology and Biotechnology, University College Cork, Cork T12YN60, Ireland
| | - Javier A Varela
- 2School of Microbiology, Environmental Research Institute, Centre for Synthetic Biology and Biotechnology, University College Cork, Cork T12YN60, Ireland
| | - Loughlin Gethins
- 2School of Microbiology, Environmental Research Institute, Centre for Synthetic Biology and Biotechnology, University College Cork, Cork T12YN60, Ireland
| | - Catherine Stanton
- 3Teagasc Research Centre, Moorepark, Ireland.,4School of Microbiology, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - R P Ross
- 4School of Microbiology, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Giovanna Suzzi
- 1Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luigi Grazia
- 5Department of Science and Technology for Food and Agriculture (DISTAL), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Rosanna Tofalo
- 1Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - John P Morrissey
- 2School of Microbiology, Environmental Research Institute, Centre for Synthetic Biology and Biotechnology, University College Cork, Cork T12YN60, Ireland.,4School of Microbiology, APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Kim DH, Jeong D, Kang IB, Kim H, Seo KH. Development of a rapid and reliable TaqMan probe-based real-time PCR assay for the detection and enumeration of the multifaceted yeast Kluyveromyces marxianus in dairy products. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.08.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Buehler A, Evanowski R, Martin N, Boor K, Wiedmann M. Internal transcribed spacer (ITS) sequencing reveals considerable fungal diversity in dairy products. J Dairy Sci 2017; 100:8814-8825. [DOI: 10.3168/jds.2017-12635] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/02/2017] [Indexed: 01/30/2023]
|
15
|
Lačanin I, Mounier J, Pawtowski A, Dušková M, Kameník J, Karpíšková R. Assessment of the antifungal activity of Lactobacillus and Pediococcus spp. for use as bioprotective cultures in dairy products. World J Microbiol Biotechnol 2017; 33:188. [DOI: 10.1007/s11274-017-2354-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022]
|
16
|
Garnier L, Valence F, Mounier J. Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms 2017; 5:E42. [PMID: 28788096 PMCID: PMC5620633 DOI: 10.3390/microorganisms5030042] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023] Open
Abstract
Fungi are common contaminants of dairy products, which provide a favorable niche for their growth. They are responsible for visible or non-visible defects, such as off-odor and -flavor, and lead to significant food waste and losses as well as important economic losses. Control of fungal spoilage is a major concern for industrials and scientists that are looking for efficient solutions to prevent and/or limit fungal spoilage in dairy products. Several traditional methods also called traditional hurdle technologies are implemented and combined to prevent and control such contaminations. Prevention methods include good manufacturing and hygiene practices, air filtration, and decontamination systems, while control methods include inactivation treatments, temperature control, and modified atmosphere packaging. However, despite technology advances in existing preservation methods, fungal spoilage is still an issue for dairy manufacturers and in recent years, new (bio) preservation technologies are being developed such as the use of bioprotective cultures. This review summarizes our current knowledge on the diversity of spoilage fungi in dairy products and the traditional and (potentially) new hurdle technologies to control their occurrence in dairy foods.
Collapse
Affiliation(s)
- Lucille Garnier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
- Science et Technologie du Lait et de l'Œuf (STLO), AgroCampus Ouest, INRA, 35000 Rennes, France.
| | - Florence Valence
- Science et Technologie du Lait et de l'Œuf (STLO), AgroCampus Ouest, INRA, 35000 Rennes, France.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
17
|
Mieszkin S, Hymery N, Debaets S, Coton E, Le Blay G, Valence F, Mounier J. Action mechanisms involved in the bioprotective effect of Lactobacillus harbinensis K.V9.3.1.Np against Yarrowia lipolytica in fermented milk. Int J Food Microbiol 2017; 248:47-55. [DOI: 10.1016/j.ijfoodmicro.2017.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/16/2016] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
|
18
|
Bian X, Muhammad Z, Evivie SE, Luo GW, Xu M, Huo GC. Screening of antifungal potentials of Lactobacillus helveticus KLDS 1.8701 against spoilage microorganism and their effects on physicochemical properties and shelf life of fermented soybean milk during preservation. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Tirloni E, Bernardi C, Colombo F, Stella S. Microbiological shelf life at different temperatures and fate of Listeria monocytogenes and Escherichia coli inoculated in unflavored and strawberry yogurts. J Dairy Sci 2015; 98:4318-27. [DOI: 10.3168/jds.2015-9391] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/03/2015] [Indexed: 11/19/2022]
|
20
|
Molecular identification of isolated fungi from unopened containers of greek yogurt by DNA sequencing of internal transcribed spacer region. Pathogens 2014; 3:499-509. [PMID: 25438008 PMCID: PMC4243425 DOI: 10.3390/pathogens3030499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/11/2014] [Accepted: 06/19/2014] [Indexed: 12/12/2022] Open
Abstract
In our previous study, we described the development of an internal transcribed spacer (ITS)1 sequencing method, and used this protocol in species-identification of isolated fungi collected from the manufacturing areas of a compounding company known to have caused the multistate fungal meningitis outbreak in the United States. In this follow-up study, we have analyzed the unopened vials of Greek yogurt from the recalled batch to determine the possible cause of microbial contamination in the product. A total of 15 unopened vials of Greek yogurt belonging to the recalled batch were examined for the detection of fungi in these samples known to cause foodborne illness following conventional microbiological protocols. Fungi were isolated from all of the 15 Greek yogurt samples analyzed. The isolated fungi were genetically typed by DNA sequencing of PCR-amplified ITS1 region of rRNA gene. Analysis of data confirmed all of the isolated fungal isolates from the Greek yogurt to be Rhizomucor variabilis. The generated ITS1 sequences matched 100% with the published sequences available in GenBank. In addition, these yogurt samples were also tested for the presence of five types of bacteria (Salmonella, Listeria, Staphylococcus, Bacillus and Escherichia coli) causing foodborne disease in humans, and found negative for all of them.
Collapse
|
21
|
Abstract
Candida kefyr is an emerging pathogen among patients with hematologic malignancies (HM). We performed a retrospective study at Johns Hopkins Hospital to evaluate the epidemiology of C. kefyr colonization and infection in HM patients between 2004 and 2010. Eighty-three patients were colonized and/or infected with C. kefyr, with 8 (9.6%) having invasive candidiasis (IC). The yearly incidence of C. kefyr colonization and candidemia increased over the study period (P < 0.01), particularly after 2009. In 2010, C. kefyr caused 16.7% of candidemia episodes. The monthly incidence of C. kefyr was higher during the summer throughout the study. In a cohort of patients with acute myelogenic leukemia receiving induction chemotherapy, risks for C. kefyr colonization included the summer season (odds ratio [OR], 3.1; P = 0.03); administration of an azole (OR, 0.06; P < 0.001) or amphotericin B (OR, 0.35; P = 0.05) was protective. Fingerprinting of 16 isolates by repetitive sequence-based PCR showed that all were different genotypes. The epidemiology of C. kefyr candidemia was evaluated in another hospital in Montreal, Canada; data confirmed higher rates of C. kefyr infection in the summer. C. kefyr appears to be increasing in HM patients, with prominent summer seasonality. These findings raise questions about the effect of antifungal agents and health care exposures (e.g., yogurt) on the epidemiology of this yeast.
Collapse
|
22
|
Nagy E, Dlauchy D, Medeiros AO, Péter G, Rosa CA. Yarrowia porcina sp. nov. and Yarrowia bubula f.a. sp. nov., two yeast species from meat and river sediment. Antonie van Leeuwenhoek 2014; 105:697-707. [PMID: 24500004 DOI: 10.1007/s10482-014-0125-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/22/2014] [Indexed: 11/26/2022]
Abstract
Eleven yeast strains representing two hitherto undescribed species were isolated from different kinds of meat samples in Hungary and one from the sediment of a tropical freshwater river in Southeastern Brazil. The analysis of the sequences of their large subunit rRNA gene D1/D2 domain and the internal transcribed spacer (ITS) regions placed the two new species in the Yarrowia clade. Some of the seven strains representing the first new species can mate and give rise to asci and form ascospores embedded in capsular material, which qualifies it as the third teleomorph species of the Yarrowia clade. The name Yarrowia porcina sp. nov. (type strain: NCAIM Y.02100(T) = CBS 12935(T) = NRRL Y-63669(T), allotype strain UFMG-RD131(A) = CBS 12932(A)) is proposed for this new yeast species, which, based on physiological characters, is indistinguishable from Yarrowia lipolytica and some other species of the genus. Considerable intraspecific variability was detected among the sequences of the large subunit rRNA gene D1/D2 domains of the seven strains. The variability among the D1/D2 sequences exceeded the divergence observed among the ITS sequences and in some cases more than 1 % substitution among the D1/D2 sequences was detected. The conspecificity of these strains was supported by the low (0-3 substitutions) sequence divergence among their ITS sequences, the result of a parsimony network analysis utilizing the concatenated ITS and D1/D2 sequences and also by the fingerprint patterns generated by microsatellite primed PCR. No ascospore formation was observed in the group of the other five strains representing the second new species. These strains shared identical D1/D2 and ITS sequences. Yarrowia bubula f.a., sp. nov. (type strain: NCAIM Y.01998(T) = CBS 12934(T) = NRRL Y-63668(T)) is proposed to accommodate these strains.
Collapse
MESH Headings
- Brazil
- Cluster Analysis
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Genes, rRNA
- Geologic Sediments/microbiology
- Hungary
- Meat/microbiology
- Molecular Sequence Data
- Mycological Typing Techniques
- Phylogeny
- RNA, Fungal/genetics
- RNA, Ribosomal/genetics
- Rivers/microbiology
- Sequence Analysis, DNA
- Yarrowia/classification
- Yarrowia/genetics
- Yarrowia/isolation & purification
Collapse
Affiliation(s)
- Edina Nagy
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Corvinus University of Budapest, Somlói út 14-16, Budapest, 1118, Hungary
| | | | | | | | | |
Collapse
|
23
|
Belguesmia Y, Rabesona H, Mounier J, Pawtowsky A, Le Blay G, Barbier G, Haertlé T, Chobert JM. Characterization of antifungal organic acids produced by Lactobacillus harbinensis K.V9.3.1Np immobilized in gellan–xanthan beads during batch fermentation. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.08.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Nagy E, Niss M, Dlauchy D, Arneborg N, Nielsen DS, Péter G. Yarrowia divulgata f.a., sp. nov., a yeast species from animal-related and marine sources. Int J Syst Evol Microbiol 2013; 63:4818-4823. [DOI: 10.1099/ijs.0.057208-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five yeast strains, phenotypically indistinguishable from Yarrowia lipolytica and Yarrowia deformans, were recovered from different animal-related samples. One strain was isolated from a bacon processing plant in Denmark, two strains from chicken liver in the USA, one strain from chicken breast in Hungary and one from minced beef in Hungary. Comparisons of the sequences of their large subunit rRNA gene D1/D2 domain and the internal transcribed spacer (ITS) regions revealed that, despite their phenotypic similarity, they represent a novel yeast species of the Yarrowia clade with Y. deformans being the genotypically closest relative (LSU rRNA gene D1/D2 and ITS region similarity of 97.0 and 93.7 %, respectively). Yarrowia divulgata f.a., sp. nov. is proposed to accommodate these strains with F6-17T ( = CBS 11013T = CCUG 56725T) as the type strain. Some D1/D2 sequences of yeasts from marine habitats were found in the GenBank database that were identical to those of the strains of Y. divulgata f.a., sp. nov. Unfortunately, these strains were not available for our study.
Collapse
Affiliation(s)
- Edina Nagy
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Corvinus University of Budapest, Somlói út 14-16, H-1118 Budapest, Hungary
| | - Marete Niss
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | - Dénes Dlauchy
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Corvinus University of Budapest, Somlói út 14-16, H-1118 Budapest, Hungary
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
| | - Gábor Péter
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Corvinus University of Budapest, Somlói út 14-16, H-1118 Budapest, Hungary
| |
Collapse
|
25
|
Li H, Liu L, Zhang S, Uluko H, Cui W, Lv J. Potential use of Lactobacillus casei AST18 as a bioprotective culture in yogurt. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Delavenne E, Ismail R, Pawtowski A, Mounier J, Barbier G, Le Blay G. Assessment of lactobacilli strains as yogurt bioprotective cultures. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.06.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Detection of viable Zygosaccharomyces bailii in fruit juices using ethidium monoazide bromide and real-time PCR. Int J Food Microbiol 2009; 131:246-50. [DOI: 10.1016/j.ijfoodmicro.2009.01.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 11/17/2022]
|
28
|
Mayoral MB, Martin R, Hernández PE, González I, García T. A reverse transcriptase PCR technique for the detection and viability assessment of Kluyveromyces marxianus in yoghurt. J Food Prot 2006; 69:2210-6. [PMID: 16995526 DOI: 10.4315/0362-028x-69.9.2210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A fast and sensitive reverse transcriptase PCR (RT-PCR) method was developed for the detection of viable Kluyveromyces marxianus in yoghurt. Yeast-specific primers were used with the RT-PCR to evaluate the suitability of 18S rRNA as a target for the detection of viable yeasts in pure culture and yoghurt. The RT-PCR assay was able to detect down to 10(2) CFU ml(-1) in yoghurt samples contaminated with viable yeast cells. Application of the RT-PCR method to commercial yoghurt samples demonstrated the utility of this technique for detection of low concentrations of viable yeast cells in naturally contaminated dairy products. The 18S rRNA molecule is an appropriate target for cell viability assessment because of its limited persistence after cell death and the resultant high level of sensitivity of the assay.
Collapse
Affiliation(s)
- María Belén Mayoral
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
29
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|