1
|
Heckler C, Vale MG, Canales HDS, Stradiotto GC, Giordano ALPL, Schreiber AZ, Sant'Ana AS. Spore-forming bacteria in gelatin: Characterization, identification by 16S rRNA and MALDI-TOF mass spectrometry (MS), and presence of heat resistance and virulence genes. Int J Food Microbiol 2024; 422:110813. [PMID: 38970997 DOI: 10.1016/j.ijfoodmicro.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Gelatin, a versatile protein derived from collagen, is widely used in the food, pharmaceutical and medical sectors. However, bacterial contamination by spore-forming bacteria during gelatin processing represents a significant concern for product safety and quality. In this study, an investigation was carried out to explore the heat and chemical resistance, as well as the identification and characterization of spore-forming bacteria isolated from gelatin processing. The methodologies involved chemical resistance tests with drastic pH in microplates and thermal resistance tests in capillary tubes of various isolates obtained at different processing stages. In addition, phenotypic and genotypic analyses were carried out to characterize the most resistant isolates of spore-forming bacteria. The findings of this study revealed the presence of several species, including Bacillus cereus, Bacillus licheniformis, Bacillus sonorensis, Bacillus subtilis, Geobacillus stearothermophilus, and Clostridium sporogenes, with some isolates exhibiting remarkable chemical and heat resistances. In addition, a significant proportion of the most resistant isolates showed gelatinase activity (n = 19/21; 90.5 %) and the presence of heat resistance (n = 5/21; 23.8 %), and virulence genes (n = 11/21; 52.4 %). The results of this study suggest that interventions should be done in quality control practices and that process parameter adjustments and effective contamination reduction strategies should be implemented through gelatin processing.
Collapse
Affiliation(s)
- Caroline Heckler
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Matheus G Vale
- Department of Integrated Systems, Faculty of Mechanical Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Héctor D S Canales
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Graziele C Stradiotto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Luisa P L Giordano
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Angelica Z Schreiber
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Regulation of Enterotoxins Associated with Bacillus cereus Sensu Lato Toxicoinfection. Appl Environ Microbiol 2022; 88:e0040522. [PMID: 35730937 PMCID: PMC9275247 DOI: 10.1128/aem.00405-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacillus cereus sensu lato (s.l.) includes foodborne pathogens, as well as beneficial microorganisms, such as bioinsecticides. Some of the beneficial and commercially used B. cereus s.l. strains have been shown to carry enterotoxin genes, the products of which can cause toxicoinfection in humans. Furthermore, recent epidemiological reports indicated that some bioinsecticidal strains have been linked with foodborne illness outbreaks. This demonstrates the need for improved surveillance of B. cereus s.l., which includes characterization of isolates' virulence capacity. However, the prediction of virulence capacity of B. cereus s.l. strains is challenging. Genetic screening for enterotoxin gene presence has proven to be insufficient for accurate discrimination between virulent and avirulent strains, given that nearly all B. cereus s.l. strains carry at least one enterotoxin gene. Furthermore, complex regulatory networks governing the expression of enterotoxins, and potential synergistic interactions between enterotoxins and other virulence factors make the prediction of toxicoinfection based on isolates' genome sequences challenging. In this review, we summarize and synthesize the current understanding of the regulation of enterotoxins associated with the B. cereus s.l. toxicoinfection and identify gaps in the knowledge that need to be addressed to facilitate identification of genetic markers predictive of cytotoxicity and toxicoinfection.
Collapse
|
3
|
Castellanos Fuentes AP, Bengoa A, Gagliarini N, Abraham A, de Escalada Pla MF, Flores SK. PHYSICOCHEMICAL AND FUNCTIONAL CHARACTERISATION OF A FOOD INGREDIENT BASED ON OKARA CONTAINING PROBIOTICS. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Mezian L, Chincha AI, Vecchione A, Ghelardi E, Bonatto JMC, Marsaioli AJ, Campelo PH, Benamar I, Allah MA, Sant'Ana AS, Boumediene MB. Aerobic spore-forming bacteria in powdered infant formula: Enumeration, identification by MALDI-TOF mass spectrometry (MS), presence of toxin genes and rpoB gene typing. Int J Food Microbiol 2022; 368:109613. [DOI: 10.1016/j.ijfoodmicro.2022.109613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
|
5
|
Sadek ZI, Abdel-Rahman MA, Azab MS, Darwesh OM, Hassan MS. Microbiological evaluation of infant foods quality and molecular detection of Bacillus cereus toxins relating genes. Toxicol Rep 2018; 5:871-877. [PMID: 30167378 PMCID: PMC6111046 DOI: 10.1016/j.toxrep.2018.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/23/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022] Open
Abstract
A 205 samples representing eight different infant foods with various based materials were collected and analyzed for their microbiological properties. The contamination rate by aerobic spore formers was achieved 100% in milk based infant food with fruit, vegetables, honey, rice and infant milk powder. While, it was detected in 95, 60 and 65% of the infant food with wheat milk based, ready to use (infant food with fruit) and ready to use (infant food with vegetables), respectively. Biochemical Identification and API 50 CHB used to identify the obtained isolates and revealed that B. subtilis was the most frequently occurring Bacillus spp. Followed by B. licheniformis and B. circulans. While B. cereus was detected in 10.20% of the total isolates. Moreover, B. cereus was confirmed in 21.2% of milk based fruit, vegetables (15.7%), honey (17.2%), rice (14.1%) and wheat (12%) and vanished in the infant milk powder samples. Although, B. cereus noted in lower percentage but this strain is considered as the more harmful one in lower numbers. For that, the following part is focused on B. cereus. Forty five isolates obtained from B. Cereus contaminating samples were screened for prevalence of 3 important virulent enterotoxigenic genes using PCR technique. The CYTK gene had the highest presence which detected in 43 isolates (95.5%), followed by NHEC gene detected in 32 isolates. However, the HBLA gene was detected in just 5 isolates. So, many processes should be applied for controlling of pathogens to preserve infant lives.
Collapse
Affiliation(s)
- Zeinab I. Sadek
- Dairy Science Dept., National Research Centre, 33 Elbohoth St., Dokki, Cairo, Egypt
| | - Mohamed A. Abdel-Rahman
- Botany and Microbiology Dept., Faculty of Science (Boys branch), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed S. Azab
- Botany and Microbiology Dept., Faculty of Science (Boys branch), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Osama M. Darwesh
- Agricultural Microbiology Dept., National Research Centre, 33 Elbohoth St., Dokki, Cairo, Egypt
| | - Mahmoud S. Hassan
- Botany and Microbiology Dept., Faculty of Science (Boys branch), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
6
|
Yang BW, Yeo IC, Choi JH, Sumi CD, Hahm YT. RNA-Seq Analysis of Antibiotic-Producing Bacillus subtilis SC-8 Reveals a Role for Small Peptides in Controlling PapR Signaling. Appl Biochem Biotechnol 2017; 185:359-369. [PMID: 29152694 DOI: 10.1007/s12010-017-2653-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/30/2017] [Indexed: 02/02/2023]
Abstract
Bacillus subtilis SC-8 (BSSC8) shows a narrow antimicrobial activity against the Bacillus cereus group. Previously, B. cereus-derived PapR as a signal peptide to stimulate PlcR, which plays a significant role in regulating the transcription of virulence factors, was assumed to stimulate antibiotic production in BSSC8. To better understand the functional role of PapR in the antibiotic production of BSSC8 and the interspecies interaction, the global transcriptomic profiling of BSSC8 was investigated using RNA-Seq in this study. Small peptides derived from B. cereus wild type (WTBC) and a papR-deleted mutant strain (MTBC) were individually supplied to BSSC8 cultures, and changes in global transcription levels were compared by RNA-Seq. In the presence of WTBC small peptides, more genes (80.9%) were significantly upregulated than in cells exposed to MTBC small peptides. Specifically, 48.8 and 83.4% of genes involved in glycolysis and the TCA cycle, respectively, showed changes in transcription levels in response to small peptides from both strains. Of the genes showing the alterations, 35.0% (glycolysis) and 60.0% (TCA cycle) of transcripts were significantly regulated only in response to WTBC-derived small peptides. Furthermore, the expression of biosynthetic genes encoding several known antibiotics in BSSC8 was further decreased in response to WTBC small peptides.
Collapse
Affiliation(s)
- Byung Wook Yang
- Department of Systems Biotechnology, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - In-Cheol Yeo
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Jae Hee Choi
- Department of Systems Biotechnology, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Chandra Datta Sumi
- Department of Systems Biotechnology, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Young Tae Hahm
- Department of Systems Biotechnology, Chung-Ang University, 4726, Seodong-daero, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
7
|
Bengoa AA, Zavala L, Carasi P, Trejo SA, Bronsoms S, Serradell MDLÁ, Garrote GL, Abraham AG. Simulated gastrointestinal conditions increase adhesion ability of Lactobacillus paracasei strains isolated from kefir to Caco-2 cells and mucin. Food Res Int 2017; 103:462-467. [PMID: 29389636 DOI: 10.1016/j.foodres.2017.09.093] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
Gastrointestinal conditions along the digestive tract are the main stress to which probiotics administrated orally are exposed because they must survive these adverse conditions and arrive alive to the intestine. Adhesion to epithelium has been considered one of the key criteria for the characterization of probiotics because it extends their residence time in the intestine and as a consequence, can influence the health of the host by modifying the local microbiota or modulating the immune response. Nevertheless, there are very few reports on the adhesion properties to epithelium and mucus of microorganisms after passing through the gastrointestinal tract. In the present work, we evaluate the adhesion ability in vitro of L. paracasei strains isolated from kefir grains after acid and bile stress and we observed that they survive simulated gastrointestinal passage in different levels depending on the strain. L. paracasei CIDCA 8339, 83120 and 83123 were more resistant than L. paracasei CIDCA 83121 and 83124, with a higher susceptibility to simulated gastric conditions. Proteomic analysis of L. paracasei subjected to acid and bile stress revealed that most of the proteins that were positively regulated correspond to the glycolytic pathway enzymes, with an overall effect of stress on the activation of the energy source. Moreover, it is worth to remark that after gastrointestinal passage, L. paracasei strains have increased their ability to adhere to mucin and epithelial cells in vitro being this factor of relevance for maintenance of the strain in the gut environment to exert its probiotic action.
Collapse
Affiliation(s)
- Ana Agustina Bengoa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CCT La Plata, CIC.PBA, 47 y 116, La Plata, Buenos Aires, Argentina
| | - Lucía Zavala
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CCT La Plata, CIC.PBA, 47 y 116, La Plata, Buenos Aires, Argentina
| | - Paula Carasi
- Cátedra de Microbiología, Dpto. Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata, Buenos Aires, Argentina
| | - Sebastián Alejandro Trejo
- Instituto Multidisciplinario de Biología Celular (IMBICE); Universidad Nacional de La Plata, CONICET CCT La Plata, CIC; 526 y Camino Gral Belgrano, La Plata, Buenos Aires, Argentina; Universidad Autónoma de Barcelona (UAB), Barcelona, España
| | | | - María de Los Ángeles Serradell
- Cátedra de Microbiología, Dpto. Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata, Buenos Aires, Argentina
| | - Graciela Liliana Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CCT La Plata, CIC.PBA, 47 y 116, La Plata, Buenos Aires, Argentina
| | - Analía Graciela Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CCT La Plata, CIC.PBA, 47 y 116, La Plata, Buenos Aires, Argentina; Área Bioquímica y Control de Alimentos, Dpto. Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata; 47 y 115, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Oh H, Seo DJ, Jeon SB, Park H, Jeong S, Chun HS, Oh M, Choi C. Isolation and Characterization of Bacillus cereus Bacteriophages from Foods and Soil. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:260-269. [PMID: 28205130 DOI: 10.1007/s12560-017-9284-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
The aim of this study was to isolate and characterize Bacillus cereus bacteriophages of various origins. Twenty-seven bacteriophages against B. cereus were isolated from various Korean traditional fermented foods and soils. Plaque size, transmission electron microscopy, virulence profile, and in vitro lytic activity of bacteriophage isolates were examined. Transmission electron microscopy confirmed B. cereus bacteriophages belonging to the family Siphoviridae. Among B. cereus bacteriophages with broad host range, 18 isolates (66.7%) did not harbor any B. cereus virulence factors. Among them, bacteriophage strain CAU150036, CAU150038, CAU150058, CAU150064, CAU150065, and CAU150066 effectively inhibited B. cereus in vitro within 1 h. Therefore, they are considered potential candidates for controlling the contamination of B. cereus in food or other applications.
Collapse
Affiliation(s)
- Hyejin Oh
- Department of Food and Nutrition, College of Biotechnology and Agriculture Resource, Chung-Ang University, Seodongdaero, Daeduck, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Dong Joo Seo
- Department of Food and Nutrition, College of Biotechnology and Agriculture Resource, Chung-Ang University, Seodongdaero, Daeduck, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Su Been Jeon
- Department of Food and Nutrition, College of Biotechnology and Agriculture Resource, Chung-Ang University, Seodongdaero, Daeduck, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Hyunkyung Park
- Department of Food and Nutrition, College of Biotechnology and Agriculture Resource, Chung-Ang University, Seodongdaero, Daeduck, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Suntak Jeong
- Department of Food and Nutrition, College of Biotechnology and Agriculture Resource, Chung-Ang University, Seodongdaero, Daeduck, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Hyang Sook Chun
- Department of Food Science and Technology, College of Biotechnology and Agriculture Resource, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea
| | - Mihwa Oh
- National Institute of Animal Science, Rural Development Administration, Jeonju, Jeollabuk-do, 54875, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Agriculture Resource, Chung-Ang University, Seodongdaero, Daeduck, Anseong, Gyeonggi, 17546, Republic of Korea.
| |
Collapse
|
9
|
Liu X, Ding S, Shi P, Dietrich R, Märtlbauer E, Zhu K. Non-hemolytic enterotoxin of Bacillus cereus induces apoptosis in Vero cells. Cell Microbiol 2016; 19. [PMID: 27762484 DOI: 10.1111/cmi.12684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
Bacillus cereus is an opportunistic pathogen that often causes foodborne infectious diseases and food poisoning. Non-hemolytic enterotoxin (Nhe) is the major toxin found in almost all enteropathogenic B. cereus and B. thuringiensis isolates. However, little is known about the cellular response after Nhe triggered pore formation on cell membrane. Here, we demonstrate that Nhe induced cell cycle arrest at G0 /G1 phase and provoked apoptosis in Vero cells, most likely associated with mitogen-activated protein kinase (MAPK) and death receptor pathways. The influx of extracellular calcium ions and increased level of reactive oxygen species in cytoplasm were sensed by apoptosis signal-regulating kinase 1 (ASK1) and p38 MAPK. Extrinsic death receptor Fas could also promote the activation of p38 MAPK. Subsequently, ASK1 and p38 MAPK triggered downstream caspase-8 and 3 to initiate apoptosis. Our results clearly demonstrate that ASK1, and Fas-p38 MAPK-mediated caspase-8 dependent pathways are involved in apoptotic cell death provoked by the pore-forming enterotoxin Nhe.
Collapse
Affiliation(s)
- Xiaoye Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peijie Shi
- The Children's Hospital of Fudan University, Shanghai, China
| | - Richard Dietrich
- Institute of Food Safety, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Erwin Märtlbauer
- Institute of Food Safety, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Screening of Cytotoxic B. cereus on Differentiated Caco-2 Cells and in Co-Culture with Mucus-Secreting (HT29-MTX) Cells. Toxins (Basel) 2016; 8:toxins8110320. [PMID: 27827957 PMCID: PMC5127117 DOI: 10.3390/toxins8110320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/09/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022] Open
Abstract
B. cereus is an opportunistic foodborne pathogen able to cause diarrhoea. However, the diarrhoeal potential of a B. cereus strain remains difficult to predict, because no simple correlation has yet been identified between the symptoms and a unique or a specific combination of virulence factors. In this study, 70 B. cereus strains with different origins (food poisonings, foods and environment) have been selected to assess their enterotoxicity. The B. cereus cell-free supernatants have been tested for their toxicity in vitro, on differentiated (21 day-old) Caco-2 cells, using their ATP content, LDH release and NR accumulation. The genetic determinants of the main potential enterotoxins and virulence factors (ces, cytK, entFM, entS, hbl, nhe, nprA, piplC and sph) have also been screened by PCR. This analysis showed that none of these genes was able to fully explain the enterotoxicity of B. cereus strains. Additionally, in order to assess a possible effect of the mucus layer in vitro, a cytotoxicity comparison between a monoculture (Caco-2 cells) and a co-culture (Caco-2 and HT29-MTX mucus-secreting cells) model has been performed with selected B. cereus supernatants. It appeared that, in these conditions, the mucus layer had no notable influence on the cytotoxicity of B. cereus supernatants.
Collapse
|
11
|
Rolny IS, Tiscornia I, Racedo SM, Pérez PF, Bollati-Fogolín M. Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus. Benef Microbes 2016; 7:749-760. [PMID: 27459335 DOI: 10.3920/bm2015.0191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of selected lactobacilli strains on the course of B. cereus infection.
Collapse
Affiliation(s)
- I S Rolny
- 1 Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina
| | - I Tiscornia
- 2 Cell Biology Unit, Institut Pasteur de Montevideo, Calle Mataojo 2020, 11400 Montevideo, Uruguay.,3 Laboratorio de Biotecnología, Facultad de Ingeniería-Universidad ORT Uruguay, Cuareim 1451, 11100 Montevideo, Uruguay
| | - S M Racedo
- 4 Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - P F Pérez
- 1 Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina.,5 Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Calle 47 y 116, B1900AJI La Plata, Argentina
| | - M Bollati-Fogolín
- 2 Cell Biology Unit, Institut Pasteur de Montevideo, Calle Mataojo 2020, 11400 Montevideo, Uruguay
| |
Collapse
|
12
|
A case of intoxication due to a highly cytotoxic Bacillus cereus strain isolated from cooked chicken. Food Microbiol 2015; 46:195-199. [DOI: 10.1016/j.fm.2014.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/12/2022]
|
13
|
Berthold-Pluta A, Pluta A, Garbowska M. The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract. Microb Pathog 2015; 82:7-14. [PMID: 25794697 DOI: 10.1016/j.micpath.2015.03.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/17/2014] [Accepted: 03/09/2015] [Indexed: 12/29/2022]
Abstract
Bacillus cereus is a Gram-positive bacterium widely distributed in soil and vegetation. This bacterial species can also contaminate raw or processed foods. Pathogenic B. cereus strains can cause a range of infections in humans, as well as food poisoning of an emetic (intoxication) or diarrheal type (toxico-infection). Toxico-infections are due to the action of the Hbl toxin, Nhe toxin, and cytotoxin K produced by the microorganism in the gastrointestinal tract. This occurs once the spores or vegetative B. cereus cells survive the pH barrier of the stomach and reach the small intestine where they produce toxins in sufficient amounts. This article discusses the effect of various factors on the survival of B. cereus in the gastrointestinal tract, including low pH and the presence of digestive enzymes in the stomach, bile salts in the small intestine, and indigenous microflora in the lower parts of the gastrointestinal tract. Additional aspects also reported to affect B. cereus survival and virulence in the gastrointestinal tract include the interaction of the spores and vegetative cells with enterocytes. In vitro studies revealed that both vegetative B. cereus and spores can survive in the gastrointestinal tract suggesting that the biological form of the microorganism may have less influence on the occurrence of the symptoms of infection than was once believed. It is most likely the interaction between the pathogen and enterocytes that is necessary for the diarrheal form of B. cereus food poisoning to develop. The adhesion of B. cereus to the intestinal epithelium allows the bacterium to grow and produce enterotoxins in the proximity of the epithelium. Recent studies suggest that the human intestinal microbiota inhibits the growth of vegetative B. cereus cells considerably.
Collapse
Affiliation(s)
- Anna Berthold-Pluta
- Division of Milk Biotechnology, Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C St, 02-787 Warsaw, Poland.
| | - Antoni Pluta
- Division of Milk Biotechnology, Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C St, 02-787 Warsaw, Poland
| | - Monika Garbowska
- Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Inter-Department Problem Group for Dairy Industries, Rakowiecka St 36, 02-532 Warsaw, Poland
| |
Collapse
|
14
|
Rolny IS, Minnaard J, Racedo SM, Pérez PF. Murine model of Bacillus cereus gastrointestinal infection. J Med Microbiol 2014; 63:1741-1749. [PMID: 25231625 DOI: 10.1099/jmm.0.079939-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacillus cereus is a spore-forming micro-organism responsible for foodborne illness. In this study, we focus on the host response following intragastric challenge with a pathogenic B. cereus strain (B10502) isolated from a foodborne outbreak. C57BL/6J female mice were infected by gavage with strain B10502. Controls were administered with PBS. Infection leads to significant modification in relevant immune cells in the spleen, Peyer's patches (PP) and mesenteric lymph nodes (MLN). These findings correlated with an increase in the size of PP as compared with uninfected controls. Histological studies showed that B. cereus infection increased the ratio of intestinal goblet cells and induces mononuclear cell infiltrates in spleen at 5 days post-infection. Evaluation of cytokine mRNA expression demonstrated a significant increase in IFN-γ in MLN after 2 days of infection. The present work demonstrates that infection of mice with vegetative B. cereus is self-limited. Our findings determined relevant cell populations that were involved in the control of the pathogen through modification of the ratio and/or activation.
Collapse
Affiliation(s)
- Ivanna S Rolny
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115-B1900AJI, La Plata, Argentina
| | - Jessica Minnaard
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CONICET-CCT La Plata), Calle 47 y 116-B1900AJI, La Plata, Argentina
| | - Silvia M Racedo
- Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115-B1900AJI, La Plata, Argentina
| | - Pablo F Pérez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CONICET-CCT La Plata), Calle 47 y 116-B1900AJI, La Plata, Argentina.,Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115-B1900AJI, La Plata, Argentina
| |
Collapse
|
15
|
Bacillus cereus in infant foods: prevalence study and distribution of enterotoxigenic virulence factors in Isfahan Province, Iran. ScientificWorldJournal 2013; 2013:292571. [PMID: 23781153 PMCID: PMC3678457 DOI: 10.1155/2013/292571] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 05/04/2013] [Indexed: 11/23/2022] Open
Abstract
This study was carried out in order to investigate the presences of Bacillus cereus and its enterotoxigenic genes in infant foods in Isfahan, Iran. Overall 200 infant foods with various based were collected and immediately transferred to the laboratory. All samples were culture and the genomic DNA was extracted from colonies with typical characters of Bacillus cereus. The presences of enterotoxigenic genes were investigated using the PCR technique. Eighty-four of two hundred samples (42%) were found to be contaminated with B. cereus with a ranges of 3 × 101–9.3 × 101 spore per gram sample. Totally, entFM had the highest (61.90%) incidences of enterotoxigenic genes while hblA had the lowest (13.09%) incidences of enterotoxigenic genes. Overall, 6.7% of B. cereus isolates had all studied enetrotoxigenic genes while 25.5% of B. cereus strains had all studied enetrotoxigenic genes expectance bceT gene. Thisstudyisthe first prevalence report of B. cereus and its enterotoxigenic genes in infant foods in Iran. Results showed that the infant food is one of the main sources of enterotoxigenic genes of B. cereus in Iran. Therefore, the accurate food inspection causes to reducing outbreak of diseases.
Collapse
|
16
|
Minnaard J, Rolny IS, Pérez PF. Interaction between Bacillus cereus and cultured human enterocytes: effect of calcium, cell differentiation, and bacterial extracellular factors. J Food Prot 2013; 76:820-6. [PMID: 23643123 DOI: 10.4315/0362-028x.jfp-12-294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacillus cereus interaction with cultured human enterocytes and the signaling pathways responsible for the biological effects of the infection were investigated. Results demonstrate that calcium depletion increases the ability of strains T1 and 2 to invade cells. Bacteria associated in greater extent to undifferentiated enterocytes and extracellular factors from strain 2 increased its own association and invasion. Inhibitors of signaling pathways related to phosphorylated lipids (U73122 and wortmannin) were able to significantly reduce cytoskeleton disruption induced by B. cereus infection. Adhesion of strain T1 decreased in the presence of U73122 and of wortmannin, as well as when those inhibitors were used together. In contrast, invasion values were diminished only by U73122. Results show that different factors are involved in the interaction between B. cereus and cultured human enterocytes. Following infection, disruption of the cytoskeleton could facilitate invasion of the eukaryotic cells.
Collapse
Affiliation(s)
- Jessica Minnaard
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (Consejo Nacional de Investigaciones Científicas y Técnicas [CONICET], La Plata), Calle 47 y 116-B1900AJI, La Plata, Argentina.
| | | | | |
Collapse
|
17
|
Doll VM, Ehling-Schulz M, Vogelmann R. Concerted action of sphingomyelinase and non-hemolytic enterotoxin in pathogenic Bacillus cereus. PLoS One 2013; 8:e61404. [PMID: 23613846 PMCID: PMC3628865 DOI: 10.1371/journal.pone.0061404] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/10/2013] [Indexed: 11/18/2022] Open
Abstract
Bacillus cereus causes food poisoning and serious non-gastrointestinal-tract infections. Non-hemolytic enterotoxin (Nhe), which is present in most B. cereus strains, is considered to be one of the main virulence factors. However, a B. cereus ΔnheBC mutant strain lacking Nhe is still cytotoxic to intestinal epithelial cells. In a screen for additional cytotoxic factors using an in vitro model for polarized colon epithelial cells we identified B. cereus sphingomyelinase (SMase) as a strong inducer of epithelial cell death. Using single and double deletion mutants of sph, the gene encoding for SMase, and nheBC in B. cereus we demonstrated that SMase is an important factor for B. cereus cytotoxicity in vitro and pathogenicity in vivo. SMase substantially complemented Nhe induced cytotoxicity in vitro. In addition, SMase but not Nhe contributed significantly to the mortality rate of larvae in vivo in the insect model Galleria mellonella. Our study suggests that the role of B. cereus SMase as a secreted virulence factor for in vivo pathogenesis has been underestimated and that Nhe and SMase complement each other significantly to cause full B. cereus virulence hence disease formation.
Collapse
Affiliation(s)
- Viktoria M. Doll
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung ZIEL, Technische Universität München, Freising Weihenstephan, Germany
| | - Monika Ehling-Schulz
- Functional Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Roger Vogelmann
- Second Department of Internal Medicine, Universitätsmedizin Mannheim, University Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|
18
|
Santos C, Almeida F, Guimarães A, Abrahão W, Arantes O, Vilas-Bôas G. RE-PCR variability and toxigenic profile of food poisoning, foodborne and soil-associated Bacillus cereus isolates from Brazil. Int J Food Microbiol 2011; 151:277-83. [DOI: 10.1016/j.ijfoodmicro.2011.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/25/2011] [Accepted: 09/11/2011] [Indexed: 11/25/2022]
|
19
|
Rae R, Iatsenko I, Witte H, Sommer RJ. A subset of naturally isolated Bacillus strains show extreme virulence to the free-living nematodes Caenorhabditis elegans and Pristionchus pacificus. Environ Microbiol 2011; 12:3007-21. [PMID: 20626457 DOI: 10.1111/j.1462-2920.2010.02278.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The main food source of free-living nematodes in the soil environment is bacteria, which can affect nematode development, fecundity and survival. In order to occupy a reliable source of bacterial food, some nematodes have formed specific relationships with an array of invertebrate hosts (where bacteria proliferate once the hosts dies), thus forming a tritrophic system of nematode, bacteria and insect or other invertebrates. We isolated 768 Bacillus strains from soil (from Germany and the UK), horse dung and dung beetles and fed them to the genetically tractable free-living nematodes Caenorhabditis elegans and Pristionchus pacificus to isolate nematocidal strains. While C. elegans is a bacteriovorous soil nematode, P. pacificus is an omnivorous worm that is often found in association with scarab beetles. We found 20 Bacillus strains (consisting of B. cereus, B. weihenstephanensis, B. mycoides and Bacillus sp.) that were pathogenic to C. elegans and P. pacificus causing 70% to 100% mortality over 5 days and significantly affect development and brood size. The most pathogenic strains are three B. cereus-like strains isolated from dung beetles, which exhibit extreme virulence to C. elegans in less than 24 h, but P. pacificus remains resistant. C. elegans Bre mutants were also highly susceptible to the B. cereus-like strains indicating that their toxins use a different virulence mechanism than B. thuringiensis Cry 5B toxin. Also, mutations in the daf-2/daf-16 insulin signaling pathway do not rescue survival. We profiled the toxin genes (bcet, nhe complex, hbl complex, pcpl, sph, cytK, piplc, hly2, hly3, entFM and entS) of these three B. cereus-like strains and showed presence of most toxin genes but absence of the hbl complex. Taken together, this study shows that the majority of naturally isolated Bacillus from soil, horse dung and Geotrupes beetles are benign to both C. elegans and P. pacificus. Among 20 pathogenic strains with distinct virulence patterns against the two nematodes, we selected three B. cereus-like strains to investigate resistance and susceptibility immune responses in nematodes.
Collapse
Affiliation(s)
- Robbie Rae
- Max-Planck Institute for Developmental Biology, Department for Evolutionary Biology, Spemannstrasse 37, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
20
|
Ruas-Madiedo P, Medrano M, Salazar N, De Los Reyes-Gavilán CG, Pérez PF, Abraham AG. Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells. J Appl Microbiol 2010; 109:2079-86. [PMID: 20846331 DOI: 10.1111/j.1365-2672.2010.04839.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS To evaluate the capability of the exopolysaccharides (EPS) produced by lactobacilli and bifidobacteria from human and dairy origin to antagonize the cytotoxic effect of bacterial toxins. METHODS AND RESULTS The cytotoxicity of Bacillus cereus extracellular factors on Caco-2 colonocytes in the presence/absence of the EPS was determined by measuring the integrity of the tissue monolayer and the damage to the cell membrane (extracellular lactate dehydrogenase activity). Additionally, the protective effect of EPS against the haemolytic activity of the streptolysin-O was evaluated on rabbit erythrocytes. The EPS produced by Bifidobacterium animalis ssp. lactis A1 and IPLA-R1, Bifidobacterium longum NB667 and Lactobacillus rhamnosus GG were able to counteract the toxic effect of bacterial toxins on the eukaryotic cells at 1mg ml(-1) EPS concentration. The EPS A1 was the most effective in counteracting the effect of B. cereus toxins on colonocytes, even at lower doses (0·5mg ml(-1) ), whereas EPS NB667 elicited the highest haemolysis reduction on erythrocytes. CONCLUSIONS The production of EPS by lactobacilli and bifidobacteria could antagonize the toxicity of bacterial pathogens, this effect being EPS and biological marker dependent. SIGNIFICANCE AND IMPACT OF THE STUDY This work allows gaining insight about the mechanisms that probiotics could exert to improve the host health.
Collapse
Affiliation(s)
- P Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Clair G, Roussi S, Armengaud J, Duport C. Expanding the known repertoire of virulence factors produced by Bacillus cereus through early secretome profiling in three redox conditions. Mol Cell Proteomics 2010; 9:1486-98. [PMID: 20368289 DOI: 10.1074/mcp.m000027-mcp201] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The pathogen Bacillus cereus causes diarrheal disease in humans. In the small intestine, B. cereus has to deal with anaerobiosis, low oxidoreduction potential, and carbohydrate limitation conditions. To gain insight into the virulence potential of low density B. cereus cells in such an environment, we cultured bacteria in low and high oxidoreduction potential anoxic conditions and in fully oxic conditions and compared their full secretomes. A unique pattern of proteins assigned to virulence factors was revealed. Among the 57 virulence-related factors, 31 were found for the first time in the B. cereus secretome. The putative fourth component of hemolysin BL (HblB'), enterotoxin FM, hemolysin II, and three new putative conserved enterotoxins were uncovered. Cross-comparison of the relative abundance of secreted proteins reveals that a restricted set comprising 19 proteins showed significant changes in response to redox condition changes. We complemented these results with transcriptomics data and confirmed the cytotoxicity of the B. cereus secretome toward Caco-2 human epithelial cells. Our data suggest that (i) the redox-dependent regulatory pathway may modulate the expression of a subset of virulence factors to ensure an appropriate response in a specific redox environment, and (ii) an early growth phase-dependent pathway could regulate the expression of several virulence factors, allowing B. cereus to infect a host whatever the redox conditions. This early growth phase-dependent pathway may function, at least partially, independently of the pleiotropic virulence gene regulator PlcR and may therefore be more specific to the B. cereus group.
Collapse
Affiliation(s)
- Gérémy Clair
- UMR408, Université d'Avignon et des Pays de Vaucluse, F-84000 Avignon, France
| | | | | | | |
Collapse
|
22
|
Kefiran protects Caco-2 cells from cytopathic effects induced by Bacillus cereus infection. Antonie Van Leeuwenhoek 2009; 96:505-13. [DOI: 10.1007/s10482-009-9366-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
|
23
|
Characterization of homofermentative lactobacilli isolated from kefir grains: potential use as probiotic. J DAIRY RES 2008; 75:211-7. [PMID: 18474139 DOI: 10.1017/s0022029908003117] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Considering that several health promoting properties are associated with kefir consumption and a reliable probiotic product requires a complete identification of the bacterial species, the present work evaluates several proved markers of probiotic potential of eleven isolates of homofermentative lactobacilli isolated from kefir grains and molecular identification and genotypic diversity. Using restriction analysis of amplified ribosomal DNA (ARDRA) and analysis of the 16S-23S rRNA internal spacer region we confirmed that all homofermentative lactobacilli belong to the species Lactobacillus plantarum. RAPD-PCR analysis allowed the discrimination of lactobacilli in five clusters. All isolates exhibited high resistance to bile salt. High survival after one hour of exposure to pH 2.5 was observed in Lb. plantarum CIDCA 8313, 83210, 8327 and 8338. All isolates were hydrophilic and non autoaggregative. Isolate CIDCA 8337 showed the highest percentage of adhesion among strains. All tested lactobacilli had strong inhibitory power against Salmonella typhimurium and Escherichia coli. Seven out of eleven isolates showed inhibition against Sal. enterica and five isolates were effective against Sal. gallinarum. Only CIDCA 8323 and CIDCA 8327 were able to inhibit Sal. sonnei. We did not find any correlation between the five clusters based on RAPD-PCR and the probiotic properties, suggesting that these isolates have unique characteristics.
Collapse
|
24
|
Kakisu EJ, Abraham AG, Pérez PF, De Antoni GL. Inhibition of Bacillus cereus in milk fermented with kefir grains. J Food Prot 2007; 70:2613-6. [PMID: 18044443 DOI: 10.4315/0362-028x-70.11.2613] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of kefir-fermented milk were tested against a toxigenic strain of Bacillus cereus. The incubation of milk with B. cereus spores plus 5% kefir grains prevented spore germination and growth of vegetative forms. In contrast, when 1% kefir grains was used, no effects were observed. The presence of metabolically active kefir grains diminished titers of nonhemolytic enterotoxin A, as assessed by enzyme-linked immunosorbent assay. During fermentation, kefir microorganisms produce extracellular metabolites such as organic acids, which could play a role in the inhibition of spore germination and growth of B. cereus, although the effect of other factors cannot be ruled out. Results of the present study show that kefir-fermented milk is able to antagonize key mechanisms involved in the growth of B. cereus as well as interfere with the biological activity of this microorganism.
Collapse
Affiliation(s)
- Emiliano J Kakisu
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), 47 y 116 (1900), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | |
Collapse
|