1
|
Huang Y, Zhang T, Hu H, Duan X, Wu K, Chai X, He D. Trans-cinnamaldehyde fumigation inhibits Escherichia coli by affecting the mechanism of intracellular biological macromolecules. Nat Prod Res 2024:1-12. [PMID: 38516726 DOI: 10.1080/14786419.2024.2331611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
This study aimed to determine the antibacterial mechanism of cinnamaldehyde fumigation in Escherichia coli (E. coli). Through vapour fumigation, cinnamaldehyde was confirmed to exhibit effective antibacterial activity against E. coli. The minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) were 0.25 μL/mL and 0.5 μL/mL, respectively. Based on transmission electron microscopy, the wrinkled bacterial cells observed after fumigation could be related to the leakage of intracellular substances. Laser tweezers Raman spectroscopy revealed changes in the main chain of proteins, the hydrogen bond system and spatial structure, and single- and double-stranded DNA breaks. In addition, breakage of the fatty acyl chain backbone was found to affect the vertical order degree of the lipid bilayer and cell membrane fluidity, thereby inhibiting the growth of E. coli. Overall, our findings indicate that cinnamaldehyde fumigation inhibits E. coli growth by inducing changes in intracellular biological macromolecules.
Collapse
Affiliation(s)
- Yuqiang Huang
- Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Tong Zhang
- Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Huiying Hu
- Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Xuejuan Duan
- Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Kegang Wu
- Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Xianghua Chai
- Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Dong He
- Department of Food Science and Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Ding Q, Ge C, Baker RC, Buchanan RL, Tikekar RV. Assessment of trans-cinnamaldehyde and eugenol assisted heat treatment against Salmonella Typhimurium in low moisture food components. Food Microbiol 2023; 112:104228. [PMID: 36906318 DOI: 10.1016/j.fm.2023.104228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/16/2022] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
Increased thermal resistance of Salmonella at low water activity (aw) is a significant food safety concern in low-moisture foods (LMFs). We evaluated whether trans-cinnamaldehyde (CA, 1000 ppm) and eugenol (EG, 1000 ppm), which can accelerate thermal inactivation of Salmonella Typhimurium in water, can show similar effect in bacteria adapted to low aw in different LMF components. Although CA and EG significantly accelerated thermal inactivation (55 °C) of S. Typhimurium in whey protein (WP), corn starch (CS) and peanut oil (PO) at 0.9 aw, such effect was not observed in bacteria adapted to lower aw (0.4). The matrix effect on bacterial thermal resistance was observed at 0.9 aw, which was ranked as WP > PO > CS. The effect of heat treatment with CA or EG on bacterial metabolic activity was also partially dependent on the food matrix. Bacteria adapted to lower aw had lower membrane fluidity and unsaturated to saturated fatty acids ratio, suggesting that bacteria at low aw can change its membrane composition to increase its rigidity, thus increasing resistance against the combined treatments. This study demonstrates the effect of aw and food components on the antimicrobials-assisted heat treatment in LMF and provides an insight into the resistance mechanism.
Collapse
Affiliation(s)
- Qiao Ding
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, 101047, China
| | | | - Robert L Buchanan
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742; Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA, 20742
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742.
| |
Collapse
|
3
|
Cheng S, Su R, Song L, Bai X, Yang H, Li Z, Li Z, Zhan X, Xia X, Lü X, Shi C. Citral and trans-cinnamaldehyde, two plant-derived antimicrobial agents can induce Staphylococcus aureus into VBNC state with different characteristics. Food Microbiol 2023; 112:104241. [PMID: 36906323 DOI: 10.1016/j.fm.2023.104241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Viable but nonculturable (VBNC) state bacteria are difficult to detect in the food industry due to their nonculturable nature and their recovery characteristics pose a potential threat to human health. The results of this study indicated that S. aureus was found to enter the VBNC state completely after induced by citral (1 and 2 mg/mL) for 2 h, and after induced by trans-cinnamaldehyde (0.5 and 1 mg/mL) for 1 h and 3 h, respectively. Except for VBNC state cells induced by 2 mg/mL citral, the VBNC state cells induced by the other three conditions (1 mg/mL citral, 0.5 and 1 mg/mL trans-cinnamaldehyde) were able to be resuscitated in TSB media. In the VBNC state cells induced by citral and trans-cinnamaldehyde, the ATP concentration was reduced, the hemolysin-producing ability was significantly decreased, but the intracellular ROS level was elevated. The results of heat and simulated gastric fluid experiments showed different environment resistance on VBNC state cells induced by citral and trans-cinnamaldehyde. In addition, by observing the VBNC state cells showed that irregular folds on the surface, increased electron density inside and vacuoles in the nuclear region. What's more, S. aureus was found to enter the VBNC state completely after induced by meat-based broth containing citral (1 and 2 mg/mL) for 7 h and 5 h, after induced by meat-based broth containing trans-cinnamaldehyde (0.5 and 1 mg/mL) for 8 h and 7 h. In summary, citral and trans-cinnamaldehyde can induce S. aureus into VBNC state and food industry needs to comprehensively evaluate the antibacterial capacity of these two plant-derived antimicrobial agents.
Collapse
Affiliation(s)
- Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuo Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116304, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Guan P, Chang Y, Li S, Wang X, Dong Z, Zhou W, Zheng Q, Huang Z, Suo B. Transcriptome analysis reveals the molecular mechanism of cinnamaldehyde against Bacillus cereus spores in ready-to-eat beef. Food Res Int 2023; 163:112185. [PMID: 36596126 DOI: 10.1016/j.foodres.2022.112185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate the antibacterial effect and mechanism of cinnamaldehyde on Bacillus cereus spores in ready-to-eat beef. The colour difference and texture of the ready-to-eat beef supplemented with cinnamaldehyde did not differ greatly from the colour and texture of the blank beef. However, cinnamaldehyde has an effective antibacterial effect on the total number of bacterial colonies and B. cereus spores in ready-to-eat beef. Transmission electron microscopy (TEM) analysis revealed that the cell membrane of B. cereus was disrupted by cinnamaldehyde, leading to leakage of intracellular components. Transcriptome sequencing (RNA-seq) indicated that the B. cereus spore resistance regulation system (sigB, sigW, rsbW, rsbV, yfkM and yflT) and phosphoenolpyruvate phosphotransferase system (PTS) (ptsH, ptsI and ptsG) respond positively to cinnamaldehyde in an adverse environment. Intracellular disorders due to damage to the cell membrane involve some transporters (copA, opuBA and opuD) and some oxidative stress systems (ywrO, scdA and katE) in the regulation of the body. However, downregulation of K+ transport channels (kdpD and kdpB), osmotic pressure regulation (opuE) and some oxidative stress (norR and srrA)-related genes may accelerate spore apoptosis. In addition, cinnamaldehyde also effectively inhibits the spore germination-related genes (smc, mreB and gerE). This study provides new insights into the molecular mechanism of the antibacterial effect of cinnamaldehyde on B. cereus spores in ready-to-eat beef.
Collapse
Affiliation(s)
- Peng Guan
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yuting Chang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Sen Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaojie Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Zijie Dong
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Weitao Zhou
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qi Zheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhongmin Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China
| | - Biao Suo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
5
|
Chauhan R, Kumari S, Goel G, Azmi W. Synergistic combination of malic acid with sodium hypochlorite impairs biofilm of Cronobacter sakazakii. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Chang Y, Xing M, Hu X, Feng H, Wang Y, Guo B, Sun M, Ma L, Fei P. Antibacterial Activity of Chrysanthemum buds Crude Extract Against Cronobacter sakazakii and Its Application as a Natural Disinfectant. Front Microbiol 2021; 11:632177. [PMID: 33613472 PMCID: PMC7887297 DOI: 10.3389/fmicb.2020.632177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 11/14/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic food-borne pathogen that endangers the health of neonates and infants. This study aims to elucidate the antibacterial activity and mechanism of Chrysanthemum buds crude extract (CBCE) against C. sakazakii and its application as a natural disinfectant. The antibacterial activity was evaluated by the determination of the diameter of inhibition zone (DIZ), minimum inhibitory concentration (MIC), and minimum bactericide concentration (MBC). The antibacterial mechanism was explored based on the changes of growth curve assay, intracellular ATP concentration, membrane potential, intracellular pH (pHin), content of soluble protein and nucleic acid, and cell morphology. Finally, the inactivation effects of CBCE against C. sakazakii in biofilm on stainless steel tube, tinplate, glass, and polystyrene were evaluated. The results showed that the DIZ, MIC, and MBC of CBCE against C. sakazakii were 14.55 ± 0.44–14.84 ± 0.38 mm, 10 mg/mL, and 20 mg/mL, respectively. In the process of CBCE acting on C. sakazakii, the logarithmic growth phase of the tested bacteria disappeared, and the concentrations of intracellular ATP, pHin, bacterial protein, and nucleic acid were reduced. Meanwhile, CBCE caused the cell membrane depolarization and leakage of cytoplasm of C. sakazakii. In addition, about 6.5 log CFU/mL of viable C. sakazakii in biofilm on stainless steel tube, tinplate, glass, and polystyrene could be inactivated after treatment with 1 MIC of CBCE for 30 min at 25°C. These findings reveal the antibacterial activity and mechanism of CBCE against C. sakazakii and provide a possibility of using a natural disinfectant to kill C. sakazakii in the production environment, packaging materials, and utensils.
Collapse
Affiliation(s)
- Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China.,Guizhou Fruit Processing Engineering Technology Research Center, Guiyang, China
| | - Min Xing
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xinying Hu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Hongxia Feng
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Yao Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Bingrui Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Maocheng Sun
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Lizhi Ma
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Peng Fei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
7
|
Polat Yemiş G, Delaquis P. Natural Compounds With Antibacterial Activity Against Cronobacter spp. in Powdered Infant Formula: A Review. Front Nutr 2020; 7:595964. [PMID: 33330595 PMCID: PMC7731913 DOI: 10.3389/fnut.2020.595964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Bacteria from the genus Cronobacter are opportunistic foodborne pathogens capable of causing severe infections in neonates, the elderly and immunocompromised adults. The majority of neonatal infections have been linked epidemiologically to dehydrated powdered infant formulas (PIFs), the majority of which are manufactured using processes that do not ensure commercial sterility. Unfortunately, the osmotolerance, desiccation resistance, mild thermotolerance and wide-ranging minimum, optimum and maximum growth temperatures of Cronobacter spp. are conducive to survival and/or growth during the processing, reconstitution and storage of reconstituted PIFs. Consequently, considerable research has been directed at the development of alternative strategies for the control of Cronobacter spp. in PIFs, including approaches that employ antimicrobial compounds derived from natural sources. The latter include a range of phytochemicals ranging from crude extracts or essential oils derived from various plants (e.g., thyme, cinnamon, clove, marjoram, cumin, mint, fennel), to complex polyphenolic extracts (e.g., muscadine seed, pomegranate peel, olive oil, and cocoa powder extracts), purified simple phenolic compounds (e.g., carvacrol, citral, thymol, eugenol, diacetyl, vanillin, cinnamic acid, trans-cinnamaldehyde, ferulic acid), and medium chain fatty acids (monocaprylin, caprylic acid). Antimicrobials derived from microbial sources (e.g., nisin, other antibacterial peptides, organic acids, coenzyme Q0) and animal sources (e.g., chitosan, lactoferrin, antibacterial peptides from milk) have also been shown to exhibit antibacterial activity against the species. The selection of antimicrobials for the control of Cronobacter spp. requires an understanding of activity at different temperatures, knowledge about their mode of action, and careful consideration for toxicological and nutritional effects on neonates. Consequently, the purpose of the present review is to provide a comprehensive summary of currently available data pertaining to the antibacterial effects of natural antimicrobial compounds against Cronobacter spp. with a view to provide information needed to inform the selection of compounds suitable for control of the pathogen during the manufacture or preparation of PIFs by end users.
Collapse
Affiliation(s)
- Gökçe Polat Yemiş
- Department of Food Engineering, Sakarya University, Serdivan, Turkey
| | - Pascal Delaquis
- Summerland Research and Development Research Centre, Agriculture and AgriFood Canada, Summerland, BC, Canada
| |
Collapse
|
8
|
Gao H, Yang H. Preparation and characterization of cinnamaldehyde/polyvinyl alcohol/silver nanoparticles ternary composite films. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1837587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hongfang Gao
- Weinan Vocational & Technical College, Weinan, P. R. China
| | - Hui Yang
- Shaanxi University of Science and Technology, Xi'an, P. R. China
| |
Collapse
|
9
|
Chauhan R, Singh N, Pal GK, Goel G. Trending biocontrol strategies against Cronobacter sakazakii: A recent updated review. Food Res Int 2020; 137:109385. [DOI: 10.1016/j.foodres.2020.109385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/29/2022]
|
10
|
Cetin‐Karaca H, Morgan MC. Antimicrobial efficacy of cinnamaldehyde, chitosan and high pressure processing against
Cronobacter sakazakii
in infant formula. J Food Saf 2020. [DOI: 10.1111/jfs.12845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hayriye Cetin‐Karaca
- Department of Animal and Food Sciences University of Kentucky Lexington Kentucky USA
| | - Melissa C. Morgan
- Department of Animal and Food Sciences University of Kentucky Lexington Kentucky USA
| |
Collapse
|
11
|
Zhang S, Xiong J, Lou W, Ning Z, Zhang D, Yang J. Inhibition of Cronobacter sakazakii in reconstituted infant formula using triglycerol monolaurate and its effect on the sensory properties of infant formula. Int J Food Microbiol 2020; 320:108518. [DOI: 10.1016/j.ijfoodmicro.2020.108518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 11/24/2022]
|
12
|
Lin Y, Subbiah J, Chen L, Verma T, Liu Y. Validation of radio frequency assisted traditional thermal processing for pasteurization of powdered infant formula milk. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106897] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Chang Y, Xing M, Hu X, Feng H, Wang Y, Guo B, Sun M, Ma L, Fei P. Antibacterial Activity of Chrysanthemum buds Crude Extract Against Cronobacter sakazakii and Its Application as a Natural Disinfectant. Front Microbiol 2020; 11:632177. [PMID: 33613472 DOI: 10.3389/fmicb.2020.01502/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 05/21/2023] Open
Abstract
Cronobacter sakazakii is an opportunistic food-borne pathogen that endangers the health of neonates and infants. This study aims to elucidate the antibacterial activity and mechanism of Chrysanthemum buds crude extract (CBCE) against C. sakazakii and its application as a natural disinfectant. The antibacterial activity was evaluated by the determination of the diameter of inhibition zone (DIZ), minimum inhibitory concentration (MIC), and minimum bactericide concentration (MBC). The antibacterial mechanism was explored based on the changes of growth curve assay, intracellular ATP concentration, membrane potential, intracellular pH (pHin), content of soluble protein and nucleic acid, and cell morphology. Finally, the inactivation effects of CBCE against C. sakazakii in biofilm on stainless steel tube, tinplate, glass, and polystyrene were evaluated. The results showed that the DIZ, MIC, and MBC of CBCE against C. sakazakii were 14.55 ± 0.44-14.84 ± 0.38 mm, 10 mg/mL, and 20 mg/mL, respectively. In the process of CBCE acting on C. sakazakii, the logarithmic growth phase of the tested bacteria disappeared, and the concentrations of intracellular ATP, pHin, bacterial protein, and nucleic acid were reduced. Meanwhile, CBCE caused the cell membrane depolarization and leakage of cytoplasm of C. sakazakii. In addition, about 6.5 log CFU/mL of viable C. sakazakii in biofilm on stainless steel tube, tinplate, glass, and polystyrene could be inactivated after treatment with 1 MIC of CBCE for 30 min at 25°C. These findings reveal the antibacterial activity and mechanism of CBCE against C. sakazakii and provide a possibility of using a natural disinfectant to kill C. sakazakii in the production environment, packaging materials, and utensils.
Collapse
Affiliation(s)
- Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
- Guizhou Fruit Processing Engineering Technology Research Center, Guiyang, China
| | - Min Xing
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xinying Hu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Hongxia Feng
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Yao Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Bingrui Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Maocheng Sun
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Lizhi Ma
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Peng Fei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
14
|
Antibacterial activities of plant-derived compounds and essential oils against Cronobacter strains. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3218-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Cetin-Karaca H, Morgan MC. Inactivation of Bacillus cereus spores in infant formula by combination of high pressure and trans-cinnamaldehyde. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Cetin-Karaca H, Newman MC. Antimicrobial efficacy of phytochemicals against Bacillus cereus in reconstituted infant rice cereal. Food Microbiol 2018; 69:189-195. [DOI: 10.1016/j.fm.2017.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
|
17
|
Friedman M. Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10406-10423. [PMID: 29155570 DOI: 10.1021/acs.jafc.7b04344] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cinnamaldehyde is a major constituent of cinnamon essential oils produced by aromatic cinnamon plants. This compound has been reported to exhibit antimicrobial properties in vitro in laboratory media and in animal feeds and human foods contaminated with disease-causing bacteria including Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. This integrated review surveys and interprets our current knowledge of the chemistry, analysis, safety, mechanism of action, and antibiotic activities of cinnamaldehyde in food animal (cattle, lambs, calves, pigs, poultry) diets and in widely consumed liquid (apple, carrot, tomato, and watermelon juices, milk) and solid foods. Solid foods include various fruits (bayberries, blueberries, raspberries, and strawberries), vegetables (carrots, celery, lettuce, spinach, cucumbers, and tomatoes), meats (beef, ham, pork, and frankfurters), poultry (chickens and turkeys), seafood (oysters and shrimp), bread, cheese, eggs, infant formula, and peanut paste. The described findings are not only of fundamental interest but also have practical implications for food safety, nutrition, and animal and human health. The collated information and suggested research needs will hopefully facilitate and guide further studies needed to optimize the use of cinnamaldehyde alone and in combination with other natural antimicrobials and medicinal antibiotics to help prevent and treat food animal and human diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Healthy Processed Foods Research, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , Albany, California 94710, United States
| |
Collapse
|
18
|
Muller J, Casado Quesada A, González-Martínez C, Chiralt A. Antimicrobial properties and release of cinnamaldehyde in bilayer films based on polylactic acid (PLA) and starch. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.09.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Muller J, González-Martínez C, Chiralt A. Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.07.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Inhibition of Cronobacter sakazakii Virulence Factors by Citral. Sci Rep 2017; 7:43243. [PMID: 28233814 PMCID: PMC5324112 DOI: 10.1038/srep43243] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/20/2017] [Indexed: 12/01/2022] Open
Abstract
Cronobacter sakazakii is a foodborne pathogen associated with fatal forms of necrotizing enterocolitis, meningitis and sepsis in neonates and infants. The aim of this study was to determine whether citral, a major component of lemongrass oil, could suppress putative virulence factors of C. sakazakii that contribute to infection. Sub-inhibitory concentrations of citral significantly decreased motility, quorum sensing, biofilm formation and endotoxin production. Citral substantially reduced the adhesion and invasion of C. sakazakii to Caco-2 cells and decreased bacterial survival and replication within the RAW 264.7 macrophage cells. Citral also repressed the expression of eighteen genes involved in the virulence. These findings suggest that citral has potential to be developed as an alternative or supplemental agent to mitigate the infections caused by C. sakazakii.
Collapse
|
21
|
Shi C, Jia Z, Chen Y, Yang M, Liu X, Sun Y, Zheng Z, Zhang X, Song K, Cui L, Baloch AB, Xia X. Inactivation of Cronobacter sakazakii in reconstituted infant formula by combination of thymoquinone and mild heat. J Appl Microbiol 2016; 119:1700-6. [PMID: 26440735 DOI: 10.1111/jam.12964] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/26/2015] [Accepted: 09/28/2015] [Indexed: 11/26/2022]
Abstract
AIMS The objective of this study was to determine the combined effect of thymoquinone (TQ) and mild heat on Cronobacter sakazakii in reconstituted infant formula. METHODS AND RESULTS Reconstituted infant formula samples inoculated with a mixture of four C. sakazakii strains (approx. 6·5 log CFU ml(-1) ) were prepared with various concentrations of TQ (0, 5, 10, 20 and 30 mmol l(-1) ) and were heated to 45, 50 and 55°C for 0, 10, 20, 30, 60 and 120 min, and the surviving populations of C. sakazakii at each sampling time were enumerated. To elucidate the mode of action of TQ, membrane integrity and changes in cell morphology were examined by LIVE/DEAD(®) BacLight(™) bacterial viability kit and field emission scanning electron microscope respectively. TQ at 30 mmol l(-1) reduced the pathogen to undetectable level in between 60 and 120 min at 45°C, 60 min at 50°C and 10 min at 55°C respectively. CONCLUSIONS Our results demonstrated that the combined treatments significantly reduced (P < 0·05) the population of C. sakazakii, compared to the control. Cronobacter sakazakii numbers were reduced much more rapidly with higher temperatures and increased concentrations of TQ. And combined treatment inactivated pathogen partly by causing cell membrane disruption. SIGNIFICANCE AND IMPACT OF THE STUDY These findings suggested that TQ, together with mild heat, may have potential application in infant formula to control C. sakazakii before consumption and therefore is a possible way to prevent infections associated with C. sakazakii in infant formula.
Collapse
Affiliation(s)
- C Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Z Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - M Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - X Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Z Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - X Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - K Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - L Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - A B Baloch
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - X Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
22
|
Shi C, Zhang X, Sun Y, Yang M, Song K, Zheng Z, Chen Y, Liu X, Jia Z, Dong R, Cui L, Xia X. Antimicrobial Activity of Ferulic Acid Against Cronobacter sakazakii and Possible Mechanism of Action. Foodborne Pathog Dis 2016; 13:196-204. [PMID: 26919471 DOI: 10.1089/fpd.2015.1992] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen transmitted by food that affects mainly newborns, infants, and immune-compromised adults. In this study, the antibacterial activity of ferulic acid was tested against C. sakazakii strains. Minimum inhibitory concentration of ferulic acid against C. sakazakii strains was determined using the agar dilution method. Changes in intracellular pH, membrane potential and intracellular ATP concentration were measured to elucidate the possible antibacterial mechanism. Moreover, SYTO 9 nucleic acid staining was used to assess the effect of ferulic acid on bacterial membrane integrity. Cell morphology changes were observed under a field emission scanning electron microscope. The minimum inhibitory concentrations of ferulic acid against C. sakazakii strains ranged from 2.5 to 5.0 mg/mL. Addition of ferulic acid exerted an immediate and sustained inhibition of C. sakazakii proliferation. Ferulic acid affected the membrane integrity of C. sakazakii, as evidenced by intracellular ATP concentration decrease. Moreover, reduction of intracellular pH and cell membrane hyperpolarization were detected in C. sakazakii after exposure to ferulic acid. Reduction of green fluorescence indicated the injury of cell membrane. Electronic microscopy confirmed that cell membrane of C. sakazakii was damaged by ferulic acid. Our results demonstrate that ferulic acid has moderate antimicrobial activity against C. sakazakii. It exerts its antimicrobial action partly through causing cell membrane dysfunction and changes in cellular morphology. Considering its antimicrobial properties, together with its well-known nutritional functions, ferulic acid has potential to be developed as a supplement in infant formula or other foods to control C. sakazakii.
Collapse
Affiliation(s)
- Chao Shi
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Xiaorong Zhang
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Yi Sun
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Miaochun Yang
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Kaikuo Song
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Zhiwei Zheng
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Yifei Chen
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Xin Liu
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Zhenyu Jia
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Rui Dong
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Lu Cui
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University , Yangling, Shaanxi, China
| |
Collapse
|
23
|
Ojaghian MR, Wang Q, Li X, Sun X, Xie GL, Zhang J, Hai-Wei F, Wang L. Inhibitory effect and enzymatic analysis of E-cinnamaldehyde against sclerotinia carrot rot. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 127:8-14. [PMID: 26821652 DOI: 10.1016/j.pestbp.2015.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/13/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
This study was conducted to determine the inhibitory effect of E-cinnamaldehyde (EC) against causal agent of storage carrot rot, Sclerotinia sclerotiorum, under in vivo and in vitro conditions. Based on the results, EC was able to completely inhibit mycelial growth of three isolates (P>0.05) in both volatile and contact phases after 6days at the concentrations 200μl and 1μl/ml, respectively. In addition, EC at concentrations 1 and 10μl/ml completely inhibited carpogenic germination of three isolates. The results of in vivo trials showed that EC at the concentration of 10μl/ml was able to control the disease caused by isolates 1 and 3. However the disease caused by isolate 2 was inhibited with the concentration of 20μl/ml. In enzyme analyses, the activity of polyphenoloxidase and peroxidase did not change in the inoculated carrots after application of EC. Furthermore, the level of phenylalanine ammonia lyase decreased. These results indicated that EC does not have any potential to be considered as resistance inducers against sclerotinia carrot rot.
Collapse
Affiliation(s)
- Mohammad Reza Ojaghian
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Qi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaolin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaoting Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Guan-Lin Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Jingze Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| | - Fan Hai-Wei
- Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Li Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
24
|
Li R, Fei P, Man C, Lou B, Niu J, Feng J, Sun L, Li M, Jiang Y. Tea polyphenols inactivate Cronobacter sakazakii isolated from powdered infant formula. J Dairy Sci 2016; 99:1019-1028. [DOI: 10.3168/jds.2015-10039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/03/2015] [Indexed: 11/19/2022]
|
25
|
Shi C, Sun Y, Zhang X, Zheng Z, Yang M, Ben H, Song K, Cao Y, Chen Y, Liu X, Dong R, Xia X. Antimicrobial effect of lipoic acid against Cronobacter sakazakii. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.05.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Nonthermal Inactivation ofCronobacter sakazakiiin Infant Formula Milk: A Review. Crit Rev Food Sci Nutr 2015; 56:1620-9. [DOI: 10.1080/10408398.2013.781991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Fraňková A, Marounek M, Mozrová V, Weber J, Klouček P, Lukešová D. Antibacterial Activities of Plant-Derived Compounds and Essential Oils Toward Cronobacter sakazakii and Cronobacter malonaticus. Foodborne Pathog Dis 2014; 11:795-7. [DOI: 10.1089/fpd.2014.1737] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Adéla Fraňková
- Department of Crop Production, Czech University of Life Sciences, Prague, Czech Republic
| | | | - Věra Mozrová
- Institute of Animal Science, Prague, Czech Republic
- Department of Animal Science and Food Processing, Czech University of Life Sciences, Prague, Czech Republic
| | - Jaroslav Weber
- Department of Crop Production, Czech University of Life Sciences, Prague, Czech Republic
| | - Pavel Klouček
- Department of Quality of Agricultural Products, Czech University of Life Sciences, Prague, Czech Republic
| | - Daniela Lukešová
- Department of Animal Science and Food Processing, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
28
|
Upadhyaya I, Kollanoor-Johny A, Darre M, Venkitanarayanan K. Efficacy of plant-derived antimicrobials for reducing egg-borne transmission of Enteritidis. J APPL POULTRY RES 2014. [DOI: 10.3382/japr.2014-00941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Investigating the responses of Cronobacter sakazakii to garlic-drived organosulfur compounds: a systematic study of pathogenic-bacterium injury by use of high-throughput whole-transcriptome sequencing and confocal micro-raman spectroscopy. Appl Environ Microbiol 2013; 80:959-71. [PMID: 24271174 DOI: 10.1128/aem.03460-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present the results of a study using high-throughput whole-transcriptome sequencing (RNA-seq) and vibrational spectroscopy to characterize and fingerprint pathogenic-bacterium injury under conditions of unfavorable stress. Two garlic-derived organosulfur compounds were found to be highly effective antimicrobial compounds against Cronobacter sakazakii, a leading pathogen associated with invasive infection of infants and causing meningitis, necrotizing entercolitis, and bacteremia. RNA-seq shows changes in gene expression patterns and transcriptomic response, while confocal micro-Raman spectroscopy characterizes macromolecular changes in the bacterial cell resulting from this chemical stress. RNA-seq analyses showed that the bacterial response to ajoene differed from the response to diallyl sulfide. Specifically, ajoene caused downregulation of motility-related genes, while diallyl sulfide treatment caused an increased expression of cell wall synthesis genes. Confocal micro-Raman spectroscopy revealed that the two compounds appear to have the same phase I antimicrobial mechanism of binding to thiol-containing proteins/enzymes in bacterial cells generating a disulfide stretching band but different phase II antimicrobial mechanisms, showing alterations in the secondary structures of proteins in two different ways. Diallyl sulfide primarily altered the α-helix and β-sheet, as reflected in changes in amide I, while ajoene altered the structures containing phenylalanine and tyrosine. Bayesian probability analysis validated the ability of principal component analysis to differentiate treated and control C. sakazakii cells. Scanning electron microscopy confirmed cell injury, showing significant morphological variations in cells following treatments by these two compounds. Findings from this study aid in the development of effective intervention strategies to reduce the risk of C. sakazakii contamination in the food production environment and on food contact surfaces, reducing the risks to susceptible consumers.
Collapse
|
30
|
Venkitanarayanan K, Kollanoor-Johny A, Darre MJ, Donoghue AM, Donoghue DJ. Use of plant-derived antimicrobials for improving the safety of poultry products. Poult Sci 2013; 92:493-501. [PMID: 23300319 DOI: 10.3382/ps.2012-02764] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Salmonella Enteritidis and Campylobacter jejuni are the 2 major foodborne pathogens transmitted through poultry products. Chickens are the reservoir hosts of these pathogens, with their intestinal colonization being the most significant factor causing contamination of meat and eggs. Effective preslaughter strategies for reducing the colonization of birds with these pathogens are critical to improve the microbiological safety of poultry products. An antimicrobial treatment that can be applied through feed represents the most practical and economically viable method for adoption on farms. Additionally, a natural and safe antimicrobial will be better accepted by producers without concerns for toxicity. This symposium talk discussed the potential use of plant-derived, GRAS (generally recognized as safe)-status molecules, caprylic acid, trans-cinnamaldehyde, eugenol, carvacrol, and thymol as feed supplements for reducing cecal populations of Salmonella Enteritidis and C. jejuni in chickens. Additionally, the effect of plant molecules on Salmonella virulence genes critical for cecal colonization in chickens was also discussed.
Collapse
Affiliation(s)
- K Venkitanarayanan
- Department of Animal Science, University of Connecticut, Storrs 06269, USA.
| | | | | | | | | |
Collapse
|
31
|
Cinnamon antimicrobial effect against Salmonella typhimurium cells treated by pulsed electric fields (PEF) in pasteurized skim milk beverage. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.06.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
Yemiş GP, Pagotto F, Bach S, Delaquis P. Thermal Tolerance and Survival ofCronobacter sakazakiiin Powdered Infant Formula Supplemented with Vanillin, Ethyl Vanillin, and Vanillic Acid. J Food Sci 2012; 77:M523-7. [DOI: 10.1111/j.1750-3841.2012.02834.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Yemiş GP, Pagotto F, Bach S, Delaquis P. Effect of vanillin, ethyl vanillin, and vanillic acid on the growth and heat resistance of Cronobacter species. J Food Prot 2011; 74:2062-9. [PMID: 22186046 DOI: 10.4315/0362-028x.jfp-11-230] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preservatives could be part of an effective intervention strategy for the control of Cronobacter species in foods, but few compounds with the desired antimicrobial properties have been identified to date. We examined the antibacterial activity of vanillin, ethyl vanillin, and vanillic acid against seven Cronobacter spp. in quarter-strength tryptic soy broth with 5 g/liter yeast extract (TSBYE) adjusted to pH 5.0, 6.0, and 7.0 at 10, 21, and 37°C. All compounds exhibited pH- and temperature-dependant bacteriostatic and bactericidal activity. MICs of vanillin and ethyl vanillin consistently increased with decreasing pH and temperature, but vanillic acid had little activity at pH values of 6.0 and 7.0. The MICs for all temperatures, pH values, and bacterial strains tested were 2 mg/ml ethyl vanillin, 3 mg/ml vanillin, and >8 mg/ml vanillic acid. MBCs also were influenced by pH, although significantly higher concentrations were needed to inactivate the bacteria at 21°C than at 10 or 37°C. Survivor curves for Cronobacter sakazakii strains at the MBCs of each compound revealed that all treatments resulted in immediate loss of cell viability at 37°C. Measurements of propidium iodide uptake indicated that the cell membranes were damaged by exposure to all three compounds. The thermal resistance of C. sakazakii was examined at 58°C in TSBYE supplemented with MBCs of each compound at pH 5.0 and 6.0. D-values at pH 5.0 were reduced from 14.56 ± 0.60 min to 0.93 ± 0.01, 0.63 ± 0.01, and 0.98 ± 0.02 min for vanillin, ethyl vanillin, and vanillic acid, respectively. These results suggest that vanillin, ethyl vanillin, and vanillic acid may be useful for the control of Cronobacter spp. in food during preparation and storage.
Collapse
Affiliation(s)
- Gökçe Polat Yemiş
- Department of Food Engineering, Ankara University, Diskapi Campus, Ankara, Turkey 06110
| | | | | | | |
Collapse
|
34
|
Ulbricht C, Seamon E, Windsor RC, Armbruester N, Bryan JK, Costa D, Giese N, Gruenwald J, Iovin R, Isaac R, Grimes Serrano JM, Tanguay-Colucci S, Weissner W, Yoon H, Zhang J. An Evidence-Based Systematic Review of Cinnamon (Cinnamomumspp.) by the Natural Standard Research Collaboration. J Diet Suppl 2011; 8:378-454. [DOI: 10.3109/19390211.2011.627783] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Amalaradjou MAR, Venkitanarayanan K. Proteomic Analysis of the Mode of Antibacterial Action ofTrans-Cinnamaldehyde AgainstCronobacter sakazakii415. Foodborne Pathog Dis 2011; 8:1095-102. [DOI: 10.1089/fpd.2011.0841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Amalaradjou MAR, Venkitanarayanan K. Effect of Trans-Cinnamaldehyde on Reducing Resistance to Environmental Stresses inCronobacter sakazakii. Foodborne Pathog Dis 2011; 8:403-9. [DOI: 10.1089/fpd.2010.0691] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
37
|
Amalaradjou MAR, Venkitanarayanan K. Effect of trans-cinnamaldehyde on inhibition and inactivation of Cronobacter sakazakii biofilm on abiotic surfaces. J Food Prot 2011; 74:200-8. [PMID: 21333138 DOI: 10.4315/0362-028x.jfp-10-296] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The efficacy of trans-cinnamaldehyde (TC), an ingredient in cinnamon oil, for inhibiting biofilm synthesis (560 and 750 μM TC) and inactivating mature biofilms (23 and 38 mM TC) of Cronobacter sakazakii was investigated at 24 and 12 °C in the presence and absence of reconstituted infant formula on polystyrene plates, stainless steel coupons, feeding bottle coupons, and enteral feeding tube coupons. Additionally, TC's effect on the expression of genes critical for biofilm formation in C. sakazakii was determined by reverse transcription quantitative PCR. TC inhibited and inactivated C. sakazakii biofilms on all matrices tested at both temperatures. C. sakazakii was reduced by >4.0 and 3.0 log CFU/ml after 96 h of exposure to 38 mM and 750 μM TC, respectively. Reverse transcription quantitative PCR results revealed that TC significantly (P≤0.05) down-regulated biofilm-associated genes in C. sakazakii. TC could potentially be used to control C. sakazakii biofilms on infant formula feeding equipment and preparatory areas.
Collapse
|
38
|
Investigación de un caso de infección neonatal por Enterobacter sakazakii asociada a un preparado en polvo para lactantes. Enferm Infecc Microbiol Clin 2010; 28:713-5. [DOI: 10.1016/j.eimc.2010.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/26/2010] [Accepted: 04/08/2010] [Indexed: 11/17/2022]
|
39
|
Kim SA, Kim OY, Rhee MS. Direct application of supercritical carbon dioxide for the reduction of Cronobacter spp. (Enterobacter sakazakii) in end products of dehydrated powdered infant formula. J Dairy Sci 2010; 93:1854-60. [PMID: 20412898 DOI: 10.3168/jds.2009-2738] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 01/13/2010] [Indexed: 11/19/2022]
Abstract
The objective of this study was to develop a viable new method for inactivation of Cronobacter spp. that could be applied directly to dehydrated powdered infant formula (PIF) using supercritical carbon dioxide (SC-CO(2)). Samples inoculated with Cronobacter spp. were subjected to SC-CO(2) treatment under various conditions (temperature: 63, 68, and 73 degrees C; pressure: 15, 20, and 25 MPa; time: 10, 20, and 30 min). The survival of Cronobacter spp. was assayed, as were any changes in the quality of the treated PIF. Inactivation of Cronobacter spp. by SC-CO(2) was enhanced as temperature and pressure conditions increased (>6.32 log(10) cfu/g). In a validation assay using low-level inoculation (3.21 log(10) cfu/g), treatment at 73 degrees C and 15 MPa for 30 min, 20 MPa for 20 and 30 min, or 25 MPa for 20 and 30 min reduced Cronobacter spp. to undetectable levels, with no recovery of cell viability. There was no significant change in water activity, pH, and color of the treated PIF. Overall, the optimum conditions for elimination of Cronobacter spp. were determined to be 73 degrees C and 20 MPa for 20 min. These parameters for effective SC-CO(2) treatment are feasibly applicable to end product of dehydrated PIF. The results of our study may contribute to the development of an efficient method for improving the microbiological safety of PIF.
Collapse
Affiliation(s)
- S A Kim
- Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, South Korea
| | | | | |
Collapse
|
40
|
Al-Nabulsi AA, Osaili TM, Shaker RR, Olaimat AN, Ayyash MM, Holley RA. Survival of Cronobacter species in reconstituted herbal infant teas and their sensitivity to bovine lactoferrin. J Food Sci 2010; 74:M479-84. [PMID: 20492118 DOI: 10.1111/j.1750-3841.2009.01371.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cronobacter is a new genus containing 5 species previously known as Enterobacter sakazakii. The popularity of "natural" substances and alternative medicine has extended the use of natural antimicrobials and herbs to foods, and some herbs are claimed to relieve gastric disturbances in infants. The present study investigated the antimicrobial activity of bovine lactoferrin (LF) and Cronobacter survival in commercial herbal infant teas (HITs) reconstituted with water at different temperatures. Cronobacter cells were able to grow in all reconstituted HITs at 37 or 21 degrees C after 6 h. A 4-log reduction in Cronobacter was achieved by reconstituting herbal infant tea at > or = 60 degrees C. LF was able to reduce Cronobacter species viability in herbal infant tea. No viable cells were recovered after 4 h at 37 degrees C in the presence of > or = 5 mg LF/mL. The bactericidal activity of LF was reduced at lower concentrations and lower temperatures. This study demonstrates that if present in reconstituted herbal infant tea, Cronobacter can grow and this may compromise the safety of these products. Therefore, addition of LF to reconstituted HIT may be a promising approach for the effective control of this organism. Practical Application: Cronobacter species can be isolated from herbal teas, and these products are claimed to relieve gastric disturbances in infants. This study demonstrates that Cronobacter cells present in reconstituted herbal infant teas (HITs) can grow if not held at acceptable temperatures. It was shown that reconstitution of these tea formulas with > or = 60 degrees C water reduced the potential risk from Cronobacter. Furthermore, use of lactoferrin (LF) may be a promising approach for effective control of these organisms in HIT held at nonrefrigeration temperatures (10 to 37 degrees C) for short periods.
Collapse
Affiliation(s)
- Anas A Al-Nabulsi
- Dept. of Nutrition and Food Technology, Faculty of Agriculture, Jordan Univ. of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| | | | | | | | | | | |
Collapse
|
41
|
Healy B, Cooney S, O'Brien S, Iversen C, Whyte P, Nally J, Callanan JJ, Fanning S. Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathog Dis 2010; 7:339-50. [PMID: 19958103 DOI: 10.1089/fpd.2009.0379] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cronobacter spp. (Enterobacter sakazakii) are a recently described genus that is comprised of six genomospecies. The classification of these organisms was revised based on a detailed polyphasic taxonomic study. Cronobacter spp. are regarded as ubiquitous organisms having been isolated from a wide variety of foods. These bacteria are opportunistic pathogens and are linked with life-threatening infections in neonates. Clinical symptoms of Cronobacter infection include necrotizing enterocolitis, bacteremia, and meningitis, with case fatality rates of 50-80% being reported. Contaminated powdered infant formula has been epidemiologically linked with infections. Recently, infections among immunocompromised adults, mainly the elderly, have also been reported. A high tolerance to osmotic stress and elevated temperatures contribute to the survival of Cronobacter spp. in dried foods such as powdered infant formula. Controlling the organism in the production environment, thereby reducing dissemination, necessitates the provision of suitable diagnostic tools. Studies demonstrated that a high degree of variability exists amongst the phenotypic-based methods used to identify Cronobacter spp. However, advances in molecular detection and subtyping techniques have significantly improved the identification and characterization of Cronobacter spp. The dose required to induce infection has yet to be determined. In vitro virulence studies have shown that Cronobacter spp. may survive in macrophage cells and efficiently attach to and invade epithelial cell lines. The production of exopolysaccharide may contribute to the formation of biofilm and active efflux pumps promote resistance to antimicrobial agents such as bile salts and disinfectants. A holistic approach combining techniques such as comparative genome analysis, proteomics, and in vivo challenges could help unravel the complex interactions between this pathogen and its host. These data would help identify those properties in Cronobacter spp. which enable the bacterium to survive in the production environment and infect vulnerable neonates via the food chain.
Collapse
Affiliation(s)
- Brendan Healy
- Centres for Food Safety and Foodborne Zoonomics, School of Agriculture, Food Science, and Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Divya KH, Varadaraj MC. Response Surface Plots for the Behavioral Pattern of Yersinia enterocolitica in Chocolate Milk as Affected by Trans-Cinnamaldehyde, a Spice Essential Oil Constituent. FOOD BIOPROCESS TECH 2009. [DOI: 10.1007/s11947-009-0297-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|