1
|
Li F, Yuan Q, Li M, Zhou J, Gao H, Hu N. Nitrogen retention and emissions during membrane-covered aerobic composting for kitchen waste disposal. ENVIRONMENTAL TECHNOLOGY 2024; 45:4397-4407. [PMID: 37615415 DOI: 10.1080/09593330.2023.2252162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The composting performance and nitrogen transformation during membrane-covered aerobic composting of kitchen waste were investigated. The aerobic composting products of the kitchen waste had a high seed germination index of ∼180%. The application of the membrane increased the mean temperature in the early cooling stage of composting by 4.5℃, resulted in a lower moisture content, and reduced the emissions of NH3 and N2O by 48.5% and 44.1%, respectively, thereby retaining 7.9% more nitrogen in the compost. The adsorption of the condensed water layer under inner-membrane was the reason for reducing NH3 emissions, and finite element modeling revealed that the condensed water layer was present throughout the composting process with a maximum thickness of ∼2 mm in the thermophilic stage. The reduction of N2O emissions was related to the micro-positive pressure in the reactor, which promoted the distribution of oxygen, thus weakening denitrification. In addition, the membrane cover decreased the diversity of the bacterial community and increased the diversity of ammonia-oxidizing strains. This study confirmed that membrane-covered composting was suitable for kitchen waste management and could be used as a strategy to mitigate NH3 and N2O emissions.
Collapse
Affiliation(s)
- Fei Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qingbin Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Meng Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Haofeng Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Yan Z, Li J, Hu Y, Zhang Y, Wu Y, Ju X, Cai C, Chen G, Sun C, Zhang R. MALDI-TOF MS combined with AUC method for tigecycline susceptibility testing in Escherichia coli. JAC Antimicrob Resist 2024; 6:dlad119. [PMID: 38455378 PMCID: PMC10919394 DOI: 10.1093/jacamr/dlad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/19/2023] [Indexed: 03/09/2024] Open
Abstract
Objectives The wide spread of tet(X4) gene orthologues in the environment, food, poultry and humans is causing serious tigecycline resistance. Consequently, developing a fast and universal method to detect tigecycline resistance has become increasingly important. Methods During 2019-2022, 116 Escherichia coli isolates were obtained from nine provinces in China. All isolates were tested for their susceptibility to antimicrobial agents by the microdilution broth method and for the tet(X4) gene by PCR. Ten tet(X4)-positive E. coli isolates were used to confirm certain conditions, including the optimal incubation time, the optimal concentration of tigecycline, and the cut-off of the relative growth (RG) value. Results The optimal time and concentration of tigecycline for separation of susceptible and resistant isolates was 2 h and 4 mg/L, and the RG cut-off value was 0.4. We validated whether the experiment was feasible using 116 isolates of E. coli. The method yielded a susceptibility of 94.9% (95% CI: 81.4%-99.1%) and a specificity of 96.1% (95% CI: 88.3%-99.0%). Conclusions This research has shown that this optical antimicrobial susceptibility testing method can rapidly differentiate between susceptible and resistant phenotypes in isolates of E. coli. In the same range as the current gold-standard methods, the clinical turnaround time is reduced from 48 h to 2.5 h. The above results suggest that the method has splendid specificity and operationality.
Collapse
Affiliation(s)
- Zelin Yan
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiapin Li
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Hu
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyang Ju
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Cai
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengtao Sun
- Beijing Key Laboratory of Detection Technology for Animal Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Fusco V, Chieffi D, Fanelli F, Montemurro M, Rizzello CG, Franz CMAP. The Weissella and Periweissella genera: up-to-date taxonomy, ecology, safety, biotechnological, and probiotic potential. Front Microbiol 2023; 14:1289937. [PMID: 38169702 PMCID: PMC10758620 DOI: 10.3389/fmicb.2023.1289937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria belonging to the genera Weissella and Periweissella are lactic acid bacteria, which emerged in the last decades for their probiotic and biotechnological potential. In 2015, an article reviewing the scientific literature till that date on the taxonomy, ecology, and biotechnological potential of the Weissella genus was published. Since then, the number of studies on this genus has increased enormously, several novel species have been discovered, the taxonomy of the genus underwent changes and new insights into the safety, and biotechnological and probiotic potential of weissellas and periweissellas could be gained. Here, we provide an updated overview (from 2015 until today) of the taxonomy, ecology, safety, biotechnological, and probiotic potential of these lactic acid bacteria.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | | | | |
Collapse
|
4
|
Du Y, Liu L, Yan W, Li Y, Li Y, Cui K, Yu P, Gu Z, Zhang W, Feng J, Li Z, Tang H, Du Y, Zhao H. The anticancer mechanisms of exopolysaccharide from Weissella cibaria D-2 on colorectal cancer via apoptosis induction. Sci Rep 2023; 13:21117. [PMID: 38036594 PMCID: PMC10689803 DOI: 10.1038/s41598-023-47943-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Exopolysaccharide (EPS) from Weissella cibaria has been devoted to the study of food industry. However, the anticancer activity of W. cibaria derived EPS has not yet been investigated. In this study, we obtained the EPS from W. cibaria D-2 isolated from the feces of healthy infants and found that D-2-EPS, a homopolysaccharide with porous web like structure, could effectively inhibit the proliferation, migration, invasion and induce cell cycle arrest in G0/G1 phase of colorectal cancer (CRC) cells. In HT-29 tumor xenografts, D-2-EPS significantly retarded tumor growth without obvious cytotoxicity to normal organs. Furthermore, we revealed that D-2-EPS promoted the apoptosis of CRC cells by increasing the levels of Fas, FasL and activating Caspase-8/Caspase-3, indicating that D-2-EPS might induce apoptosis through the extrinsic Fas/FasL pathway. Taken together, the D-2-EPS has the potential to be developed as a nutraceutical or drug to prevent and treat colorectal cancer.
Collapse
Affiliation(s)
- Yurong Du
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Lei Liu
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Weiliang Yan
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Yang Li
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Yuanzhe Li
- Department of Pediatrics, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Kang Cui
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Pu Yu
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - WanCun Zhang
- Department of Pediatrics, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China
| | - Yabing Du
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| | - Huan Zhao
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Belleggia L, Osimani A. Fermented fish and fermented fish-based products, an ever-growing source of microbial diversity: A literature review. Food Res Int 2023; 172:113112. [PMID: 37689879 DOI: 10.1016/j.foodres.2023.113112] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Fermented fish and fermented fish-based products are part of the diet of many countries all over the world. Their popularity is not only due to the unique flavor, the distinct texture, and the good nutritional quality, but also to the easiness of the production process, that is commonly based on empirical traditional methods. Fish fermentation techniques ususally rely on the combination of some key steps, including salting, addition of spices or additives, and maintenance of anaerobic conditions, thus selecting for the multiplication of some pro-technological microorganisms. The objective of the present review was to provide an overview of the current knowledge of the microbial communities occurring in fermented fish and fish-based products. Specific information was collected from scientific publications published from 2000 to 2022 with the aim of generating a comprehensive database. The production of fermented fish and fish-based foods was mostly localized in West African countries, Northern European countries, and Southeast Asian countries. Based on the available literature, the microbial composition of fermented fish and fish-based products was delineated by using viable counting combined with identification of isolates, and culture-independent techniques. The data obtained from viable counting highlighted the occurrence of microbial groups usually associated with food fermentation, namely lactic acid bacteria, staphylococci, Bacillus spp., and yeasts. The identification of isolates combined with culture-independent methods showed that the fermentative process of fish-based products was generally guided by lactobacilli (Lactiplantibacillus plantarum, Latilactobacillus sakei, and Latilactobacillus curvatus) or Tetragenococcus spp. depending on the salt concentration. Among lactic acid bacteria populations, Lactococcus spp., Pediococcus spp., Leuconostoc spp., Weissella spp., Enterococcus spp., Streptococcus spp., and Vagococcus spp. were frequently identified. Staphylococcus spp. and Bacillus spp. confirmed a great adaptation to fermented fish-based products. Other noteworthy bacterial taxa included Micrococcus spp., Pseudomonas spp., Psychrobacter spp., Halanaerobium spp., and Halomonas spp. Among human pathogenic bacteria, the occurrence of Clostridium spp. and Vibrio spp. was documented. As for yeast populations, the predominance of Candida spp., Debaryomyces spp., and Saccharomyces spp. was evidenced. The present literature review could serve as comprehensive database for the scientific community, and as a reference for the food industry in order to formulate tailored starter or adjunctive cultures for product improvement.
Collapse
Affiliation(s)
- Luca Belleggia
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, Ancona, Italy.
| |
Collapse
|
6
|
Kim E, Yang SM, Jung DH, Kim HY. Differentiation between Weissella cibaria and Weissella confusa Using Machine-Learning-Combined MALDI-TOF MS. Int J Mol Sci 2023; 24:11009. [PMID: 37446188 DOI: 10.3390/ijms241311009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Although Weissella cibaria and W. confusa are essential food-fermenting bacteria, they are also opportunistic pathogens. Despite these species being commercially crucial, their taxonomy is still based on inaccurate identification methods. In this study, we present a novel approach for identifying two important Weissella species, W. cibaria and W. confusa, by combining matrix-assisted laser desorption/ionization and time-of-flight mass spectrometer (MALDI-TOF MS) data using machine-learning techniques. After on- and off-plate protein extraction, we observed that the BioTyper database misidentified or could not differentiate Weissella species. Although Weissella species exhibited very similar protein profiles, these species can be differentiated on the basis of the results of a statistical analysis. To classify W. cibaria, W. confusa, and non-target Weissella species, machine learning was used for 167 spectra, which led to the listing of potential species-specific mass-to-charge (m/z) loci. Machine-learning techniques including artificial neural networks, principal component analysis combined with the K-nearest neighbor, support vector machine (SVM), and random forest were used. The model that applied the Radial Basis Function kernel algorithm in SVM achieved classification accuracy of 1.0 for training and test sets. The combination of MALDI-TOF MS and machine learning can efficiently classify closely-related species, enabling accurate microbial identification.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences and Resources, Yongin 17104, Republic of Korea
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences and Resources, Yongin 17104, Republic of Korea
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dae-Hyun Jung
- Institute of Life Sciences and Resources, Yongin 17104, Republic of Korea
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources, Yongin 17104, Republic of Korea
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
7
|
Joglekar A, Nimonkar Y, Bajaj A, Prakash O. Resolution of inter/intraspecies variation in Weissella group requires multigene analysis and functional characterization. J Basic Microbiol 2023; 63:140-155. [PMID: 36328735 DOI: 10.1002/jobm.202200357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022]
Abstract
Weissella confusa and Weissella cibaria strains isolated from the human- gut are considered as potential probiotics, but remain under-explored owing to their ambiguous taxonomic assignment. The present study assesses the taxonomic resolution of 11 strains belonging to W. confusa and W. cibaria species and highlights the inter- and intraspecies variations using an array of phenetic and molecular methods. Remarkable genomic variability among the strains was observed by phylogenetic analysis using concatenated housekeeping genes (pheS, gyrB, and dnaA) along with 16S rRNA gene sequence, suggesting intraspecies variations; which is also supported by the phenetic data. Analysis showed that 16S rRNA gene sequence alone could not resolve the variation, and among the tested marker genes, signals from pheS gene provide better taxonomic resolution. The biochemical and antibiotic susceptibility tests also showed considerable variations among the isolates. Additionally, 'quick' identification using mass spectroscopy-based matrix-assisted laser desorption/ionization-time of flight mass spectra was accurate up to genus only, and not species level, for the Weissella group. The study highlights need for inclusion of functional, phenetic, and multigene phylogenetic analysis in addition to 16S rRNA gene-based identification for the Weissella group, to provide better resolution in taxonomic assignments, which is often a prerequisite for the selection of potential strains with biotechnological applications.
Collapse
Affiliation(s)
- Amruta Joglekar
- National Centre for Cell Science, National Centre for Microbial Resource, Pune, Maharashtra, India
| | - Yogesh Nimonkar
- National Centre for Cell Science, National Centre for Microbial Resource, Pune, Maharashtra, India
| | - Abhay Bajaj
- National Centre for Cell Science, National Centre for Microbial Resource, Pune, Maharashtra, India.,CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Om Prakash
- National Centre for Cell Science, National Centre for Microbial Resource, Pune, Maharashtra, India.,Symbiosis Centre for Climate Change and Sustainability, Pune, Maharashtra, India
| |
Collapse
|
8
|
Kim E, Yang SM, Cho EJ, Kim HY. Evaluation of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the discrimination of Lacticaseibacillus species. Food Microbiol 2022; 107:104094. [DOI: 10.1016/j.fm.2022.104094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
|
9
|
Kim E, Yang SM, Kim IS, Kim HY. Identification of novel molecular targets for Weissella species-specific real-time PCR based on pangenome analysis. Appl Microbiol Biotechnol 2022; 106:4157-4168. [PMID: 35672470 DOI: 10.1007/s00253-022-12003-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/24/2023]
Abstract
Some Weissella species are used in probiotic products because of their beneficial effects in humans, whereas some species are considered as opportunistic pathogens that cause infections in humans. Therefore, an accurate and rapid identification of Weissella species is essential to control pathogenic Weissella species or isolate new functional strains with probiotic effects from their habitat. The objective of our study was to extract novel molecular targets using pangenome analysis for the identification of major Weissella species present in food. With 50 genomes representing 11 Weissella species, novel molecular targets were mined based on their 100% presence in the respective strains of the target species and absence in the strains of non-target bacteria. Primers based on molecular targets showed positive results for the corresponding species, whereas 79 non-target strains showed negative results. Standard curves revealed good linearity in the range of 103-108 colony-forming units per reaction. Our method was successfully applied to 74 Weissella strains isolated from food samples to demonstrate that the molecular targets provided a viable alternative to the 16S rRNA sequence. Furthermore, it was possible to identify and quantify Weissella communities in fermented foods. These results demonstrate that our method can be used for effective and accurate screening for the presence of Weissella species in foods. KEY POINTS: • This is first study to mine novel targets for differentiating 11 Weissella species. • The novel targets showed higher resolution than the 16S rRNA gene sequence. • The PCR method effectively detected Weissella species with opposing properties.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ik-Seon Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
10
|
Chang L, Mu G, Wang M, Zhao T, Tuo Y, Zhu X, Qian F. Microbial Diversity and Quality-Related Physicochemical Properties of Spicy Cabbage in Northeastern China and Their Correlation Analysis. Foods 2022; 11:1511. [PMID: 35627081 PMCID: PMC9141884 DOI: 10.3390/foods11101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Chinese spicy cabbage (CSC) is a popular special fermented food in Northeast China. The bacterial community and quality of CSC from different regions of northeastern China (Group_J: Jilin province, Group_L: Liaoning province, Group_H: Heilongjiang province) at retail (Group_P) and home-made (Group_C) were investigated in this study. The determination of the microbial community was achieved using high-throughput sequencing and the quality-related physicochemical characteristics included pH, salinity, total acid (TA), amino acid nitrogen (AAN), reducing sugar (RS), nitrite, and biogenic amines (BAs). Based on OPLS-DA analysis, there was a difference between the quality of Group_C and Group_P. No significant difference was observed in province grouping. Proteobacteria and Firmicutes were the dominant phyla, and the dominant genera were Lactobacillus, Pantoea, Weissella, and Pseudomonas. All groups had significant differences in community structure (p < 0.05). Compared with Group_C, the relative abundance of opportunistic pathogens (Pseudomonas and Serratia) in Group_P was lower. Pseudomonas and Serratia were the biomarkers in Group_H. At the genus level, Lactobacilluss and Weissella had a positive correlation with pH, Cadaverrine, and salinity (p < 0.05), however, they were negatively related to tryptamine. Pseudomonas was negatively correlated with salinity (p < 0.05). Bacterial community and physicochemical parameters of CSC, as well as the correlation between them, were discussed in this study, providing a reference for future studies on CSC inoculation and fermentation.
Collapse
Affiliation(s)
- Lixuan Chang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Mingxu Wang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Tong Zhao
- Dalian Center for Certification and Food and Drug Control, Dalian 116021, China;
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (L.C.); (G.M.); (M.W.); (Y.T.); (X.Z.)
| |
Collapse
|
11
|
Kim E, Yang SM, Kim HJ, Kim HY. Differentiating between Enterococcusfaecium and Enterococcuslactis by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Foods 2022; 11:1046. [PMID: 35407133 PMCID: PMC8997568 DOI: 10.3390/foods11071046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
Unlike Enterococcus faecium strains, some Enterococcus lactis strains are considered potential probiotic strains as they lack particular virulence and antibiotic resistance genes. However, these closely related species are difficult to distinguish via conventional taxonomic methods. Here, for the first time, we used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with BioTyper and in-house databases to distinguish between E. faecium and E. lactis. A total of 58 reference and isolated strains (89.2%) were correctly identified at the species level using MALDI-TOF MS with in-house databases. However, seven strains (10.8%) were not accurately differentiated as a single colony was identified as a different species with a similar score value. Specific mass peaks were identified by analyzing reference strains, and mass peaks at 10,122 ± 2 m/z, 3650 ± 1 m/z, and 7306 ± 1 m/z were unique to E. faecium and E. lactis reference strains, respectively. Mass peaks verified reproducibility in 60 isolates and showed 100% specificity, whereas 16S rRNA sequencing identified two different candidates for some isolates (E. faecium and E. lactis). Our specific mass peak method helped to differentiate two species, with high accuracy and high throughput, and provided a viable alternative to 16S rRNA sequencing.
Collapse
Affiliation(s)
- Eiseul Kim
- Department of Food Science and Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin 17104, Korea
| | - Seung-Min Yang
- Department of Food Science and Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin 17104, Korea
| | - Hyun-Jae Kim
- Department of Food Science and Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin 17104, Korea
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Institute of Life Sciences & Resources, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
12
|
Diversity of a Lactic Acid Bacterial Community during Fermentation of Gajami-Sikhae, a Traditional Korean Fermented Fish, as Determined by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Foods 2022; 11:foods11070909. [PMID: 35406996 PMCID: PMC8997922 DOI: 10.3390/foods11070909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
Gajami-sikhae is a traditional Korean fermented fish food made by naturally fermenting flatfish (Glyptocephalus stelleri) with other ingredients. This study was the first to investigate the diversity and dynamics of lactic acid bacteria in gajami-sikhae fermented at different temperatures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A total of 4824 isolates were isolated from the fermented gajami-sikhae. These findings indicated that Latilactobacillus, Lactiplantibacillus, Levilactobacillus, Weissella, and Leuconostoc were the dominant genera during fermentation, while the dominant species were Latilactobacillus sakei, Lactiplantibacillus plantarum, Levilactobacillus brevis, Weissella koreensis, and Leuconostoc mesenteroides. At all temperatures, L. sakei was dominant at the early stage of gajami-sikhae fermentation, and it maintained dominance until the later stage of fermentation at low temperatures (5 °C and 10 °C). However, L. plantarum and L. brevis replaced it at higher temperatures (15 °C and 20 °C). The relative abundance of L. plantarum and L. brevis reached 100% at the later fermentation stage at 20 °C. These results suggest that the optimal fermentation temperatures for gajami-sikhae are low rather than high temperatures. This study could allow for the selection of an adjunct culture to control gajami-sikhae fermentation.
Collapse
|
13
|
Kim E, Yang SM, Kim HY. Analysis of Cultivable Microbial Community during Kimchi Fermentation Using MALDI-TOF MS. Foods 2021; 10:foods10051068. [PMID: 34066045 PMCID: PMC8151656 DOI: 10.3390/foods10051068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 12/31/2022] Open
Abstract
Kimchi, a traditional Korean fermented vegetable, has received considerable attention for its health-promoting effects. This study analyzes the cultivable microbial community in kimchi fermented at different temperatures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to comprehensively understand the factors affecting the quality of kimchi. Of the 5204 strains isolated from kimchi, aligned with the in-house database, 4467 (85.8%) were correctly identified at the species level. The fermentation temperature affected the microbial community by varying the pH and acidity, which was mainly caused by temperature-dependent competition between the different lactic acid bacteria (LAB) species in kimchi. LAB, such as Levilactobacillus (Lb.) brevis and Lactiplantibacillus (Lpb.) plantarum associated with rancidity and tissue softening, proliferated faster at higher temperatures than at low temperature. In addition, LAB, such as Latilactobacillus (Lat.) sakei and Leuconostoc (Leu.) mesenteroides, which produce beneficial substances and flavor, were mainly distributed in kimchi fermented at 4 °C. This study shows as a novelty that MALDI-TOF MS is a robust and economically affordable method for investigating viable microbial communities in kimchi.
Collapse
Affiliation(s)
| | | | - Hae-Yeong Kim
- Correspondence: ; Tel.: +82-31-201-2600; Fax: +82-31-204-8116
| |
Collapse
|
14
|
Yang SM, Kim E, Kim D, Baek J, Yoon H, Kim HY. Rapid Detection of Salmonella Enteritidis, Typhimurium, and Thompson by Specific Peak Analysis Using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Foods 2021; 10:933. [PMID: 33922774 PMCID: PMC8146886 DOI: 10.3390/foods10050933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
Rapid detection of Salmonella serovars is important for the effective control and monitoring of food industries. In this study, we evaluate the application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the rapid detection of three serovars, Enteritidis, Typhimurium, and Thompson, that are epidemiologically important in Korea. All strains were identified at the genus level, with a mean score of 2.319 using the BioTyper database, and their protein patterns were confirmed to be similar by principal component analysis and main spectrum profile dendrograms. Specific peaks for the three serovars were identified by analyzing 65 reference strains representing 56 different serovars. Specific mass peaks at 3018 ± 1 and 6037 ± 1, 7184 ± 1, and 4925 ± 1 m/z were uniquely found in the reference strains of serovars Enteritidis, Typhimurium, and Thompson, respectively, and they showed that the three serovars can be differentiated from each other and 53 other serovars. We verified the reproducibility of these mass peaks in 132 isolates, and serovar classification was achieved with 100% accuracy when compared with conventional serotyping through antisera agglutination. Our method can rapidly detect a large number of strains; hence, it will be useful for the high-throughput screening of Salmonella serovars.
Collapse
Affiliation(s)
- Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (S.-M.Y.); (E.K.); (D.K.)
| | - Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (S.-M.Y.); (E.K.); (D.K.)
| | - Dayoung Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (S.-M.Y.); (E.K.); (D.K.)
| | - Jiwon Baek
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (J.B.); (H.Y.)
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea; (J.B.); (H.Y.)
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (S.-M.Y.); (E.K.); (D.K.)
| |
Collapse
|
15
|
Teixeira CG, Fusieger A, Milião GL, Martins E, Drider D, Nero LA, de Carvalho AF. Weissella: An Emerging Bacterium with Promising Health Benefits. Probiotics Antimicrob Proteins 2021; 13:915-925. [PMID: 33565028 DOI: 10.1007/s12602-021-09751-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 01/11/2023]
Abstract
Weissella strains have been the subject of much research over the last 5 years because of the genus' technological and probiotic potential. Certain strains have attracted the attention of the pharmaceutical, medical, and food industries because of their ability to produce antimicrobial exopolysaccharides (EPSs). Moreover, Weissella strains are able to keep foodborne pathogens in check because of the bacteriocins, hydrogen peroxide, and organic acids they can produce; all listed have recognized pathogen inhibitory activities. The Weissella genus has also shown potential for treating atopic dermatitis and certain cancers. W. cibaria, W. confusa, and W. paramesenteroides are particularly of note because of their probiotic potential (fermentation of prebiotic fibers) and their ability to survive in the gastrointestinal tract. It is important to note that most of the Weissella strains with these health-promoting properties have been shown to be save safe, due to the absence or the low occurrence of virulence or antibiotic-resistant genes. A large number of scientific studies continue to report on and to support the use of Weissella strains in the food and pharmaceutical industries. This review provides an overview of these studies and draws conclusions for future uses of this rich and previously unexplored genus.
Collapse
Affiliation(s)
- Camila Gonçalves Teixeira
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Andressa Fusieger
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Gustavo Leite Milião
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Evandro Martins
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil.
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites eDerivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570900, MG, Brazil.
| |
Collapse
|
16
|
The Microbial Diversity of Non-Korean Kimchi as Revealed by Viable Counting and Metataxonomic Sequencing. Foods 2020; 9:foods9111568. [PMID: 33137924 PMCID: PMC7693646 DOI: 10.3390/foods9111568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022] Open
Abstract
Kimchi is recognized worldwide as the flagship food of Korea. To date, most of the currently available microbiological studies on kimchi deal with Korean manufactures. Moreover, there is a lack of knowledge on the occurrence of eumycetes in kimchi. Given these premises, the present study was aimed at investigating the bacterial and fungal dynamics occurring during the natural fermentation of an artisan non-Korean kimchi manufacture. Lactic acid bacteria were dominant, while Enterobacteriaceae, Pseudomonadaceae, and yeasts progressively decreased during fermentation. Erwinia spp., Pseudomonasveronii, Pseudomonasviridiflava, Rahnellaaquatilis, and Sphingomonas spp. were detected during the first 15 days of fermentation, whereas the last fermentation phase was dominated by Leuconostoc kimchi, together with Weissellasoli. For the mycobiota at the beginning of the fermentation process, Rhizoplaca and Pichia orientalis were the dominant Operational Taxonomic Units (OTUs) in batch 1, whereas in batch 2 Protomyces inundatus prevailed. In the last stage of fermentation, Saccharomyces cerevisiae, Candida sake,Penicillium, and Malassezia were the most abundant taxa in both analyzed batches. The knowledge gained in the present study represents a step forward in the description of the microbial dynamics of kimchi produced outside the region of origin using local ingredients. It will also serve as a starting point for further isolation of kimchi-adapted microorganisms to be assayed as potential starters for the manufacturing of novel vegetable preserves with high quality and functional traits.
Collapse
|
17
|
Kim HB, Kim E, Yang SM, Lee S, Kim MJ, Kim HY. Development of Real-Time PCR Assay to Specifically Detect 22 Bifidobacterium Species and Subspecies Using Comparative Genomics. Front Microbiol 2020; 11:2087. [PMID: 33013760 PMCID: PMC7493681 DOI: 10.3389/fmicb.2020.02087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/07/2020] [Indexed: 01/03/2023] Open
Abstract
Bifidobacterium species are used as probiotics to provide beneficial effects to humans. These effects are specific to some species or subspecies of Bifidobacterium. However, some Bifidobacterium species or subspecies are not distinguished because similarity of 16S rRNA and housekeeping gene sequences within Bifidobacterium species is very high. In this study, we developed a real-time polymerase chain reaction (PCR) assay to rapidly and accurately detect 22 Bifidobacterium species by selecting genetic markers using comparative genomic analysis. A total of 210 Bifidobacterium genome sequences were compared to select species- or subspecies-specific genetic markers. A phylogenetic tree based on pan-genomes generated clusters according to Bifidobacterium species or subspecies except that two strains were not grouped with their subspecies. Based on pan-genomes constructed, species- or subspecies-specific genetic markers were selected. The specificity of these markers was confirmed by aligning these genes against 210 genome sequences. Real-time PCR could detect 22 Bifidobacterium specifically. We constructed the criterion for quantification by standard curves. To further test the developed assay for commercial food products, we monitored 26 probiotic products and 7 dairy products. Real-time PCR results and labeling data were then compared. Most of these products (21/33, 63.6%) were consistent with their label claims. Some products labeled at species level only can be detected up to subspecies level through our developed assay.
Collapse
Affiliation(s)
- Hyeon-Be Kim
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, South Korea
| | - Eiseul Kim
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, South Korea
| | - Seung-Min Yang
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, South Korea
| | - Shinyoung Lee
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, South Korea
| | - Mi-Ju Kim
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, South Korea
| | - Hae-Yeong Kim
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
18
|
Kim E, Yang SM, Kim HB, Kim HY. Novel specific peaks for differentiating the Lactobacillus plantarum group using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Microbiol Methods 2020; 178:106064. [PMID: 32961241 DOI: 10.1016/j.mimet.2020.106064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022]
Abstract
Identifying the Lactobacillus plantarum group using conventional taxonomic methods such as biochemical analysis and 16S rRNA gene sequencing is inaccurate, expensive, and time-consuming. In this study, for the first time, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to identify the L. plantarum group and develop a classification method for species level differentiation with specific peaks based on mass spectra. Furthermore, from the mass spectra of 131 isolates aligned with the biotyper database, 131 isolates (100%) were correctly identified at the species level with a mean score of 2.316. However, commercial databases could not accurately differentiate some isolates of L. plantarum group species because the same colony was identified as different species with similar score values. Moreover, these two species showed a similar mass pattern in the main spectrum profiles-dendrogram and Principal component analysis clustering generated by the mass peak of the reference strains and isolates. Specific peaks to each species were investigated from the analyzed mass peak, and they clearly showed that three species could be differentiated. These peaks were verified by re-identifying 131 isolates, and it demonstrated 100% specificity and accuracy. Also, using a specific peak, isolates that were undifferentiated from the biotyper database were clearly identified as one species, similar to species-specific polymerase chain reaction. Our data demonstrate that the specific peaks accurately differentiate the L. plantarum group and enable high-resolution identification at the species level; this methodology can be used to rapidly and easily identify them and determine their nomenclature.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyeon-Be Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
19
|
Kim E, Cho EJ, Yang SM, Kim MJ, Kim HY. Novel approaches for the identification of microbial communities in kimchi: MALDI-TOF MS analysis and high-throughput sequencing. Food Microbiol 2020; 94:103641. [PMID: 33279067 DOI: 10.1016/j.fm.2020.103641] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 12/22/2022]
Abstract
Complex interactions occur within microbial communities during the fermentation process of kimchi. Identification of these microorganisms provides the essential information required to improve food quality and to understand their role in this process. This was the first study to compare two methods for accuracy in the identification of microbial community changes during the fermentation of kimchi by comparing a culture-dependent (MALDI-TOF MS analysis) and a culture-independent method (high-throughput sequencing) of 16S rRNA gene fragment). Members of the Lactobacillus-related genera, Leuconostoc, and Weissella were identified as the predominant microorganisms by both methods. The culture-independent method was able to additionally identify non-lactic acid bacteria and yeasts, such as Kazachstania in kimchi. However, high-throughput sequencing failed to accurately recognize Latilactobacillus sakei, Latilactobacillus curvatus, Lactiplantibacillus plantarum, and W. cibaria, which played an important role in kimchi fermentation, as this method only allowed for identification at the genus level. Conversely, MALDI-TOF MS analysis could identify the isolates at the species level. Also, culture-dependent method could identify predominant species in viable cell communities. The culture-dependent method and culture-independent method provided complementary information by producing a more comprehensive view of the microbial ecology in fermented kimchi.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Eun-Ji Cho
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Mi-Ju Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
20
|
Kim E, Chang HC, Kim HY. Complete Genome Sequence of Lactobacillus plantarum EM, A Putative Probiotic Strain with the Cholesterol-Lowering Effect and Antimicrobial Activity. Curr Microbiol 2020; 77:1871-1882. [DOI: 10.1007/s00284-020-02000-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
|
21
|
Kim E, Yang SM, Cho EJ, Kim HY. Novel real-time PCR assay for Lactobacillus casei group species using comparative genomics. Food Microbiol 2020; 90:103485. [PMID: 32336352 DOI: 10.1016/j.fm.2020.103485] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/20/2019] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
The Lactobacillus casei group, which includes the closely related species L. casei, L. paracasei, L. rhamnosus, and L. chiayiensis, has been under debate regarding its taxonomy because of the difficulty in distinguishing the species from each other. In the present study, we developed a novel real-time PCR assay for distinguishing the L. casei group species. The pan-genome, as determined by the genomes of 44 strains, comprised 6789 genes, comparative genomic analysis showed that L. casei group strains were classified by species. Based on these results, species-specific genes were identified, and primers were designed from those genes. Real-time PCR clearly distinguished each species of the L. casei group and specifically amplified only to the target species. The method was applied to 29 probiotic products, and the detected results and label claims were compared. Total 23 products were in accordance with the label claims, and the remaining products contained species different from those stated in the label claims. Our method can rapidly and accurately distinguish the L. casei group species in a single reaction. Hence, our assay can be applied to identify L. casei group species from food or environmental samples and to accurately determine the nomenclature of the species.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Seung-Min Yang
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Eun-Ji Cho
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
22
|
Cauchie E, Delhalle L, Taminiau B, Tahiri A, Korsak N, Burteau S, Fall PA, Farnir F, Baré G, Daube G. Assessment of Spoilage Bacterial Communities in Food Wrap and Modified Atmospheres-Packed Minced Pork Meat Samples by 16S rDNA Metagenetic Analysis. Front Microbiol 2020; 10:3074. [PMID: 32038536 PMCID: PMC6985204 DOI: 10.3389/fmicb.2019.03074] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Although several studies have focused on the dynamics of bacterial food community, little is known about the variability of batch production and microbial changes that occur during storage. The aim of the study was to characterize the microbial spoilage community of minced pork meat samples, among different food production and storage, using both 16S rRNA gene sequencing and classical microbiology. Three batches of samples were obtained from four local Belgian facilities (A–D) and stored until shelf life under food wrap (FW) and modified atmosphere packaging (MAP, CO2 30%/O2 70%), at constant and dynamic temperature. Analysis of 288 samples were performed by 16S rRNA gene sequencing in combination with counts of psychrotrophic and lactic acid bacteria at 22°C. At the first day of storage, different psychrotrophic counts were observed between the four food companies (Kruskal-Wallist test, p-value < 0.05). Results shown that lowest microbial counts were observed at the first day for industries D and A (4.2 ± 0.4 and 5.6 ± 0.1 log CFU/g, respectively), whereas industries B and C showed the highest results (7.5 ± 0.4 and 7.2 ± 0.4 log CFU/g). At the end of the shelf life, psychrotrophic counts for all food companies was over 7.0 log CFU/g. With metagenetics, 48 OTUs were assigned. At the first day, the genus Photobacterium (86.7 and 19.9% for food industries A and C, respectively) and Pseudomonas (38.7 and 25.7% for food companies B and D, respectively) were dominant. During the storage, a total of 12 dominant genera (>5% in relative abundance) were identified in MAP and 7 in FW. Pseudomonas was more present in FW and this genus was potentially replaced by Brochothrix in MAP (two-sided Welch’s t-test, p-value < 0.05). Also, a high Bray-Curtis dissimilarity in genus relative abundance was observed between food companies and batches. Although the bacteria consistently dominated the microbiota in our samples are known, results indicated that bacterial diversity needs to be addressed on the level of food companies, batches variation and food storage conditions. Present data illustrate that the combined approach provides complementary results on microbial dynamics in minced pork meat samples, considering batches and packaging variations.
Collapse
Affiliation(s)
- Emilie Cauchie
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Laurent Delhalle
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Bernard Taminiau
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Assia Tahiri
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nicolas Korsak
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | | | - Frédéric Farnir
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ghislain Baré
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Georges Daube
- Department of Food Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
23
|
Jin W, Zhang Z, Zhu K, Xue Y, Xie F, Mao S. Comprehensive Understanding of the Bacterial Populations and Metabolites Profile of Fermented Feed by 16S rRNA Gene Sequencing and Liquid Chromatography-Mass Spectrometry. Metabolites 2019; 9:metabo9100239. [PMID: 31640120 PMCID: PMC6835224 DOI: 10.3390/metabo9100239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/01/2023] Open
Abstract
The comprehensive bacterial populations and metabolites profile in fermented feed is unclear, which may have significant effects on the stability of fermented feed quality and animal gut health. In this study, 16S rRNA gene sequencing and liquid chromatography–mass spectrometry were used to explore the bacterial populations and metabolites profile in the fermented feed incubated with probiotics (MF) or without probiotics (SF). The probiotics were a combination of Lactobacillus salivarius, Bacillus subtilis, and Saccharomyces cerevisiae. The pH and lactic acid levels were higher in MF than in SF (P < 0.05), while the total volatile fatty acid content was lower (P < 0.05). Interestingly, after fermentation, the most abundant bacterial genus in MF was Enterococcus, rather than the added probiotics Lactobacillus or Bacillus. Weissella and a few potential pathogens (Enterobacter, Escherichia-Shigella, and Pantoea) were dominant in SF (P < 0.05). Metabolomics analysis identified 32 different metabolites in the two types of fermented feed. These metabolites enriched in MF, such as maleic acid, phenylacetic acid, ethyl linoleate, dihomo-gamma-linolenic acid, and L-theanine had potential antimicrobial activities. Conclusively, the addition of probiotics enriched a few potentially beneficial microbes and small molecular compounds with antimicrobial activities, and inhibited the potential pathogens in fermented feed.
Collapse
Affiliation(s)
- Wei Jin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zheng Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yanfeng Xue
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fei Xie
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
MALDI-TOF/TOF mass spectrometry for determination of yeast diversity in traditional cornelian cherry tarhana produced with different cereal/pseudocereal flours. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01452-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
25
|
Huang CH, Li SW, Huang L, Watanabe K. Identification and Classification for the Lactobacillus casei Group. Front Microbiol 2018; 9:1974. [PMID: 30186277 PMCID: PMC6113361 DOI: 10.3389/fmicb.2018.01974] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
Lactobacillus casei, Lactobacillus paracasei, and Lactobacillus rhamnosus are phenotypically and genotypically closely related, and together comprise the L. casei group. Although the strains of this group are commercially valuable as probiotics, the taxonomic status and nomenclature of the L. casei group have long been contentious because of the difficulties in identifying these three species by using the most frequently used genotypic methodology of 16S rRNA gene sequencing. Long used as the gold standard for species classification, DNA–DNA hybridization is laborious, requires expert skills, and is difficult to use routinely in laboratories. Currently, genome-based comparisons, including average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH), are commonly applied to bacterial taxonomy as alternatives to the gold standard method for the demarcating phylogenetic relationships. To establish quick and accurate methods for identifying strains in the L. casei group at the species and subspecies levels, we developed species- and subspecies-specific identification methods based on housekeeping gene sequences and whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) spectral pattern analysis. By phylogenetic analysis based on concatenated housekeeping gene sequences (dnaJ, dnaK, mutL, pheS, and yycH), 53 strains were separated into four clusters corresponding to the four species: L. casei, L. paracasei and L. rhamnosus, and Lactobacillus chiayiensis sp. nov. A multiplex minisequencing assay using single nucleotide polymorphism (SNP)-specific primers based on the dnaK gene sequences and species-specific primers based on the mutL gene sequences provided high resolution that enabled the strains at the species level to be identified as L. casei, L. paracasei, and L. rhamnosus. By MALDI-TOF MS analysis coupled with an internal database and ClinProTools software, species- and subspecies-level L. casei group strains were identified based on reliable scores and species- and subspecies-specific MS peaks. The L. paracasei strains were distinguished clearly at the subspecies level based on subspecies-specific MS peaks. This article describes the rapid and accurate methods used for identification and classification of strains in the L. casei group based on housekeeping gene sequences and MALDI-TOF MS analysis as well as the novel speciation of this group including L. chiayiensis sp. nov. and ‘Lactobacillus zeae’ by genome-based methods.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Lina Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Koichi Watanabe
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan.,Department of Animal Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of human oral Capnocytophaga species. Anaerobe 2017; 48:89-93. [DOI: 10.1016/j.anaerobe.2017.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 11/23/2022]
|
27
|
Abstract
Among other fermentation processes, lactic acid fermentation is a valuable process which enhances the safety, nutritional and sensory properties of food. The use of starters is recommended compared to spontaneous fermentation, from a safety point of view but also to ensure a better control of product functional and sensory properties. Starters are used for dairy products, sourdough, wine, meat, sauerkraut and homemade foods and beverages from dairy or vegetal origin. Among lactic acid bacteria, Lactobacillus, Lactococcus, Leuconostoc, Streptococcus and Pediococcus are the majors genera used as starters whereas Weissella is not. Weissella spp. are frequently isolated from spontaneous fermented foods and participate to the characteristics of the fermented product. They possess a large set of functional and technological properties, which can enhance safety, nutritional and sensory characteristics of food. Particularly, Weissella cibaria and Weissella confusa have been described as high producers of exo-polysaccharides, which exhibit texturizing properties. Numerous bacteriocins have been purified from Weissella hellenica strains and may be used as bio-preservative. Some Weissella strains are able to decarboxylate polymeric phenolic compounds resulting in a better bioavailability. Other Weissella strains showed resistance to low pH and bile salts and were isolated from healthy human feces, suggesting their potential as probiotics. Despite all these features, the use of Weissella spp. as commercial starters remained non-investigated. Potential biogenic amine production, antibiotic resistance pattern or infection hazard partly explains this neglecting. Besides, Weissella spp. are not recognized as GRAS (Generally Recognized As Safe). However, Weissella spp. are potential powerful starters for food fermentation as well as Lactococcus, Leuconostoc or Lactobacillus species.
Collapse
|